×

Positive steady-state solutions of the Noyes–Field model for Belousov–Zhabotinskii reaction. (English) Zbl 1055.35044

Summary: The authors investigate the Noyes–Field model for Belousov–Zhabotinskii reaction and study positive steady-state solutions of this model with the homogeneous Neumann boundary condition. They obtain the existence and non-existence of non-constant positive steady-state solutions.

MSC:

35J55 Systems of elliptic equations, boundary value problems (MSC2000)
35B25 Singular perturbations in context of PDEs
35J60 Nonlinear elliptic equations
35K57 Reaction-diffusion equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Brown, K. J.; Davidson, F. A., Global bifurcation in the Brusselator system, Nonlinear Anal. TMA, 24, 1713-1725 (1995) · Zbl 0829.35010
[2] V. Capasso, O. Diekmann (Eds), Mathematics Inspired by Biology, Lecture Notes in Mathematics, Vol. 1714, Springer, Berlin, CIME, Florence, 1999.; V. Capasso, O. Diekmann (Eds), Mathematics Inspired by Biology, Lecture Notes in Mathematics, Vol. 1714, Springer, Berlin, CIME, Florence, 1999.
[3] X.F. Chen, W.M. Ni, Y.W. Qi, M.X. Wang, The effect of diffusion for strongly coupled prey-predator models, preprint.; X.F. Chen, W.M. Ni, Y.W. Qi, M.X. Wang, The effect of diffusion for strongly coupled prey-predator models, preprint.
[4] X.F. Chen, W.M. Ni, Y.W. Qi, M.X. Wang, A strongly coupled predator-prey system with non-monotonic functional response, preprint.; X.F. Chen, W.M. Ni, Y.W. Qi, M.X. Wang, A strongly coupled predator-prey system with non-monotonic functional response, preprint.
[5] Davidson, F. A.; Rynne, B. P., A priori bounds and global existence of solutions of the steady-state Sel’kov model, Proc. R. Soc. Edinburgh A, 130, 507-516 (2000) · Zbl 0960.35026
[6] Du, Y. H.; Lou, Y., Qualitative behaviour of positive solutions of a predator-prey modeleffects of saturation, Proc. R. Soc. Edinburgh A, 131, 321-349 (2001) · Zbl 0980.35028
[7] Iron, D.; Ward, M. J.; Wei, J. C., The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Physica D, 150, 1-2, 25-62 (2001) · Zbl 0983.35020
[8] Kan-on, Y., Existence and instability of Neumann layer solutions for a three-component Lotka-Volterra model with diffusion, J. Math. Anal. Appl., 243, 357-372 (2000) · Zbl 0963.35012
[9] Kan-on, Y.; Mimura, M., Singular perturbation approach to a 3-component reaction-diffusion system arising in population dynamics, SIAM J. Math. Anal., 29, 1519-1536 (1998) · Zbl 0920.35015
[10] Lou, Y.; Martinez, S.; Ni, W. M., On 3×3 Lotka-Volterra competition systems with cross-diffusion, Discrete Contin. Dynamic Systems, 6, 1, 175-190 (2000) · Zbl 1008.92035
[11] Lou, Y.; Ni, W. M., Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131, 79-131 (1996) · Zbl 0867.35032
[12] Lou, Y.; Ni, W. M., Diffusion vs cross-diffusionan elliptic approach, J. Differential Equations, 154, 157-190 (1999) · Zbl 0934.35040
[13] Martinez, S., The effect of diffusion for the multispecies Lotka-Volterra competition model, Nonlinear Anal.: Real World Appl., 4, 409-436 (2003) · Zbl 1015.35039
[14] Murray, J. D., Mathematical Biology (1993), Springer: Springer Berlin · Zbl 0779.92001
[15] L. Nirenberg, Topics in Nonlinear Functional Analysis, American Mathematical Society, Providence, RI, 2001.; L. Nirenberg, Topics in Nonlinear Functional Analysis, American Mathematical Society, Providence, RI, 2001. · Zbl 0992.47023
[16] P.Y.H. Pang, M.X. Wang, Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion, Proc. London Math. Soc., in press.; P.Y.H. Pang, M.X. Wang, Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion, Proc. London Math. Soc., in press. · Zbl 1134.35373
[17] Pang, P. Y.H.; Wang, M. X., Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. R. Soc. Edinburgh A, 133, 4, 919-942 (2003) · Zbl 1059.92056
[18] R. Peng, M.X. Wang, Non-constant positive steady states of the Brusselator model, preprint.; R. Peng, M.X. Wang, Non-constant positive steady states of the Brusselator model, preprint.
[19] Turing, A., The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. B, 237, 37-72 (1952) · Zbl 1403.92034
[20] Wang, M. X., Non-constant positive steady states of the Sel’kov model, J. Differential Equations, 190, 2, 600-620 (2003) · Zbl 1163.35362
[21] Wang, X. F., Qualitative behavior of solutions of chemotactic diffusion systemseffects of motility and chemotaxis and dynamics, SIAM J. Math. Anal., 31, 3, 535-560 (2000) · Zbl 0990.92001
[22] Wei, J. C.; Winter, M., Spikes for the Gierer-Meinhardt system in two dimensionsthe strong coupling case, J. Differential Equations, 178, 2, 478-518 (2002) · Zbl 1042.35005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.