An asymptotically periodic Schrödinger equation with indefinite linear part. (English) Zbl 1056.35065

Summary: We consider the Schrödinger equation \(-\Delta u+ V(x)u= f(x,u)\), where \(V\) is periodic and \(f\) asymptotically periodic in the \(x\)-variables, \(0\) is in a spectral gap of \(-\Delta+ V\) and \(f\) is either asymptotically linear or superlinear as \(|u|\to\infty\). We show that this equation has a solution \(u\in H^1(\mathbb{R}^N)\), \(u\neq 0\).


35J60 Nonlinear elliptic equations
35B15 Almost and pseudo-almost periodic solutions to PDEs
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
Full Text: DOI


[1] Alama S., Math. 41 pp 983– (1992)
[2] DOI: 10.1016/0362-546X(83)90115-3 · Zbl 0522.58012 · doi:10.1016/0362-546X(83)90115-3
[3] DOI: 10.1007/s002080050248 · Zbl 0927.35103 · doi:10.1007/s002080050248
[4] DOI: 10.1090/S0002-9939-1993-1145940-X · doi:10.1090/S0002-9939-1993-1145940-X
[5] Cerami G., Istit. Lombardo Accad. Sci. Lett. Rend. 112 pp 332– (1978)
[6] DOI: 10.1002/cpa.3160451002 · Zbl 0785.35029 · doi:10.1002/cpa.3160451002
[7] DOI: 10.1017/S0308210500013147 · Zbl 0935.35044 · doi:10.1017/S0308210500013147
[8] Kryszewski W., Adv. Differential Equations 3 pp 441– (1998)
[9] DOI: 10.1017/S0308210500000068 · Zbl 0942.35075 · doi:10.1017/S0308210500000068
[10] DOI: 10.1016/S0362-546X(97)00689-5 · Zbl 0952.35047 · doi:10.1016/S0362-546X(97)00689-5
[11] DOI: 10.1080/03605309908821481 · Zbl 0935.35043 · doi:10.1080/03605309908821481
[12] DOI: 10.1080/03605309608821233 · Zbl 0864.35036 · doi:10.1080/03605309608821233
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.