×

Criteria for existence and nonexistence of positive solutions to a discrete periodic boundary value problem. (English) Zbl 1056.39016

The paper deals with a discrete nonlinear equation \[ -\Delta[p(n-1)\Delta u(n-1)] + q(n)u(n) = \lambda f(n,u(n)). \] The existence of positive solutions of a periodic boundary value problem \[ u(0)=u(N), \quad p(0)\Delta u(0) = p(N)\Delta u(N), \] where \(\{u(n)\}_{n=0}^{N+1}\) is a desired solution, for the system is proved. Moreover, conditions for the nonexistence of positive solutions are defined.

MSC:

39A12 Discrete version of topics in analysis
39A10 Additive difference equations
39A11 Stability of difference equations (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Atici F. M. Guseinov G. Sh. On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions J. Comput. Appl. Math. 132 2001 341 356 · Zbl 0993.34022
[2] Atici F. M. Cabada A. Existence and uniqueness results for discrete second order periodic boundary value problems Comput. Math. Appl. 2001 · Zbl 1057.39008
[3] Cabada A. Extremal solutions for the difference{\(\phi\)}Comput. Math. Appl. 42 2001 593 601 · Zbl 1001.39006
[4] Cabada A. Otero-Espinar V. Optimal existence results forn-th order periodic boundary value difference problems J. Math. Anal. Appl. 247 2000 67 86 · Zbl 0962.39006
[5] Deimling K. Nonlinear Functional Analysis Springer New York 1985 · Zbl 0559.47040
[6] Erbe L. H. Hu S. Wang H. Multiple positive solutions of some boundary value problems J. Math. Anal. Appl. 184 1994 640 648 · Zbl 0805.34021
[7] Erbe L. H. Tang M. Existence and multiplicity of positive solutions to nonlinear boundary value problems Diff. Eqn. Dyn. Syst. 4 1996 313 320 · Zbl 0868.35035
[8] Erbe L. H. Peterson A. Mathsen R. Existence, multiplicity and nonexistence of positive solutions to a differential equation on a measure chain J. Comput. Appl. Math. 113 2000 365 380 · Zbl 0937.34025
[9] Guo D. Lakshmikantham L. Nonlinear Problems in Abstract Cones Academic Press Orlanda, FL 1988
[10] Henderson J. Thompson H. B. Existence of multiple solutions for second order boundary value problems J. Diff. Eqn. 166 2 2000 443 454 · Zbl 1013.34017
[11] Krasnoselskii M. Positive Solutions of Operator Equations Noordhoff Groningen 1964
[12] Kong L. Jiang D. Multiple positive solutions of a nonlinear fourth order periodic boundary value problem Ann. Polon. Math. 69 3 1998 265 270 · Zbl 0918.34024
[13] Ma R. Multiplicity of positive solutions for second order three-point boundary value problems Comput. Math. Appl. 40 2000 193 204 · Zbl 0958.34019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.