Pfeiffer, Hendryk Higher gauge theory and a non-abelian generalization of 2-form electrodynamics. (English) Zbl 1056.70013 Ann. Phys. 308, No. 2, 447-477 (2003). Using Lie 2-groups, a non-abelian generalization of 2-form electrodynamics is introduced. Non-abelian quantities are assigned to geometric objects, including curves, surfaces, generalized local symmetries, and gauge-invariant actions. Reviewer: Mohammad Khorrami (Tehran) Cited in 23 Documents MSC: 70S15 Yang-Mills and other gauge theories in mechanics of particles and systems 81T25 Quantum field theory on lattices 18D05 Double categories, \(2\)-categories, bicategories and generalizations (MSC2010) 81T13 Yang-Mills and other gauge theories in quantum field theory Keywords:Lattice gauge theory; spin foam model; Lie 2-groups PDF BibTeX XML Cite \textit{H. Pfeiffer}, Ann. Phys. 308, No. 2, 447--477 (2003; Zbl 1056.70013) Full Text: DOI arXiv References: [1] Rothe, H. J., Lattice Gauge Theories—An Introduction (1992), World Scientific: World Scientific Singapore · Zbl 0875.81030 [2] Montvay, I.; Münster, G., Quantum Fields on a Lattice (1994), Cambridge University Press: Cambridge University Press Cambridge [3] Kalb, M.; Ramond, P., Phys. Rev. D, 9, 8, 2273-2284 (1974) [4] Savit, R., Phys. Rev. Lett., 39, 2, 55-58 (1977) [5] Savit, R., Rev. Mod. Phys., 52, 2, 453-487 (1980) [6] Henneaux, M.; Teitelboim, C., Found. Phys., 16, 7, 593-617 (1986) [7] Teitelboim, C., Phys. Lett. B, 167, 63-68 (1986) [9] Grosse, H.; Schlesinger, K.-G., Int. J. Theor. Phys., 40, 2, 459-475 (2001), Erwin Schrödinger Institute preprint ESI 561 (1998), Vienna [12] Baez, J. C., Adv. Math., 117, 2, 253-272 (1996), Available from <gr-qc/9411007> [14] Eckmann, B.; Hilton, P. J., Math. Ann., 145, 227-255 (1962) [18] Brown, R., Homol. Homot. Appl., 1, 1, 1-78 (1999) [19] Gray, J. W., Formal Category Theory: Adjointness for 2-Categories. Formal Category Theory: Adjointness for 2-Categories, Lecture Notes in Mathematics, vol. 391 (1974), Springer: Springer Berlin · Zbl 0285.18006 [20] Street, R., J. Pure Appl. Alg., 49, 283-335 (1987) [21] Power, A. J., J. Algebra, 129, 439-445 (1990) [23] Baez, J. C., (Geometry and Quantum Physics. Geometry and Quantum Physics, Lecture Notes in Physics, vol. 543 (2000), Springer: Springer Berlin), 25-93, Available from <gr-qc/9905087> [24] Rovelli, C.; Smolin, L., Phys. Rev. D, 52, 10, 5743-5759 (1995), Available from <gr-qc/9505006> [25] Baez, J. C., Class. Quant. Grav., 15, 7, 1827-1858 (1998), Available from <gr-qc/9709052> [28] Oeckl, R.; Pfeiffer, H., Nucl. Phys. B, 598, 1-2, 400-426 (2001), Available from <hep-th/0008095> [29] Pfeiffer, H.; Oeckl, R., Nucl. Phys. Proc. Suppl. B, 106, 1010-1012 (2002), Available from <hep-th/0110034> [30] Roberts, J. E., Topology, 34, 4, 771-787 (1995) [31] Pfeiffer, H., J. Math. Phys., 42, 11, 5272-5305 (2001), Available from <hep-th/0106029> [32] Oeckl, R., J. Geom. Phys., 46, 308-354 (2003) [33] Girelli, F.; Oeckl, R.; Perez, A., Class. Quant. Grav., 19, 1093-1108 (2002), Available from <gr-qc/0111022> [34] Mackaay, M., Adv. Math., 143, 288-348 (1999), Available from <math.QA/9805030> [35] Pfeiffer, H., J. Math. Phys., 44, 7, 2891-2938 (2003) [36] Einhorn, M. B.; Savit, R., Phys. Rev. D, 17, 10, 2583-2594 (1978) [37] Yetter, D. N., J. Knot Th. Ramif., 2, 1, 113-123 (1993) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.