×

Reduction of covers and Hurwitz spaces. (English) Zbl 1058.14050

The authors generalize the criterion for good reduction for covers of the projective line branched at four points, describe the reduction of the Hurwitz space modulo \(p\) and compute the number of covers with good reduction.
Reviewer: Xu Fei (Beijing)

MSC:

14H30 Coverings of curves, fundamental group

Software:

BRAID
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abramovich D., Contemp. Math. 276 pp 89– (2001)
[2] D. Abramovich and A. Vistoli, Complete moduli for families over semistable curves, math.AG/9811059, 1998.
[3] Altman A., Lect. Notes Math. pp 146– (1970)
[4] A., Ann. Inst. Fourier 47 (2) pp 599– (1997)
[5] Deligne P., Publ. Math. IHE 36 pp 75– (1969)
[6] Deligne P., Springer Lect. Notes Math. 349 pp 143– (1972)
[7] Fried M. D., Progr. Math. pp 81– (1990)
[8] M. D. Fried, Introduction to modular towers, in: Recent Developments in the Inverse Galois problem, M. D. Fried, ed., AMS Contemp. Math. Ser. (1995), 111-171.
[9] Fried M. D., Math. Ann. 290 pp 771– (1991)
[10] Gerritzen L., Proc. Koninkl. Nederl. Akad. Wetensch. 91 pp 131– (1988)
[11] A. Grothendieck, J. Dieudonne, Ealements de Geometrie Algebrique II, Publ. Math. IHES 8 (1961).
[12] Harris J., Invent. Math. 67 pp 23– (1982)
[13] Hartshorne R., Grad. Texts Math. pp 52– (1977)
[14] Huppert B., Grundl. Math. Wiss. pp 134– (1967)
[15] N. Katz and B. Mazur, Arithmetic Moduli of Elliptic Curves, Ann. Math. Stud.108, Princeton Univ. Press, 1985. · Zbl 0576.14026
[16] N., Ann. Inst. Fourier 36 (4) pp 70– (1986)
[17] Keel S., Ann. Math. 145 (1) pp 235– (1997)
[18] Math. Scand. 52 pp 161– (1983)
[19] Mumford D., Ergebn. Math. Grenzgeb. 34 pp 3–
[20] B. Przywara, Braid operation software package 2.0, 1998, http://www.iwr.uni-heidelberg.de/ftp/pub/ho.
[21] Progr. Math. 88 pp 179– (1990)
[22] Raynaud M., Invent. Math. 116 pp 425– (1994)
[23] Raynaud M., Ann. Sci. Ec. Norm. Sup. 32 pp 87– (1999)
[24] Sai?di M., Comp. Math. 107 pp 321– (1997)
[25] R. Acad. Sci. Paris 326 pp 63– (1998)
[26] J.P. Serre, Topics in Galois Theory, Res. notes math. 1, Jones and Bartlett Publishers, 1992. Lecture notes prepared by Henri Darmon.
[27] H. V lklein, Groups as Galois Groups, Cambridge Stud. Adv. Math.53, Cambridge Univ. Press, 1996.
[28] Wewers S., Preprint No. 21 pp 1998–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.