Ara, Pere Morita equivalence and Pedersen ideals. (English) Zbl 1058.46038 Proc. Am. Math. Soc. 129, No. 4, 1041-1049 (2001). Summary: We show that two \(C^{*}\)-algebras are strongly Morita equivalent if and only if their Pedersen ideals are Morita equivalent as rings with involution. Cited in 5 Documents MSC: 46L08 \(C^*\)-modules 16D90 Module categories in associative algebras PDF BibTeX XML Cite \textit{P. Ara}, Proc. Am. Math. Soc. 129, No. 4, 1041--1049 (2001; Zbl 1058.46038) Full Text: DOI OpenURL References: [1] Gene D. Abrams, Morita equivalence for rings with local units, Comm. Algebra 11 (1983), no. 8, 801 – 837. · Zbl 0503.16034 [2] Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, 2nd ed., Graduate Texts in Mathematics, vol. 13, Springer-Verlag, New York, 1992. · Zbl 0765.16001 [3] P. N. Ánh and L. Márki, Morita equivalence for rings without identity, Tsukuba J. Math. 11 (1987), no. 1, 1 – 16. · Zbl 0627.16031 [4] P. Ara, Morita equivalence for rings with involution, Algebras and Representation Theory 2 (1999), 227-247. CMP 2000:02 [5] Walter Beer, On Morita equivalence of nuclear \?*-algebras, J. Pure Appl. Algebra 26 (1982), no. 3, 249 – 267. · Zbl 0528.46042 [6] D. Blecher, On Morita’s Fundamental Theorem for \(C^{*}\)-algebras, to appear in Math. Scand. · Zbl 1028.46087 [7] Lawrence G. Brown, Philip Green, and Marc A. Rieffel, Stable isomorphism and strong Morita equivalence of \?*-algebras, Pacific J. Math. 71 (1977), no. 2, 349 – 363. · Zbl 0362.46043 [8] Lawrence G. Brown, James A. Mingo, and Nien-Tsu Shen, Quasi-multipliers and embeddings of Hilbert \?*-bimodules, Canad. J. Math. 46 (1994), no. 6, 1150 – 1174. · Zbl 0846.46031 [9] José Luis García and Juan Jacobo Simón, Morita equivalence for idempotent rings, J. Pure Appl. Algebra 76 (1991), no. 1, 39 – 56. · Zbl 0747.16007 [10] Philip Green, The local structure of twisted covariance algebras, Acta Math. 140 (1978), no. 3-4, 191 – 250. · Zbl 0407.46053 [11] G. G. Kasparov, Hilbert \?*-modules: theorems of Stinespring and Voiculescu, J. Operator Theory 4 (1980), no. 1, 133 – 150. · Zbl 0456.46059 [12] Shoji Kyuno, Equivalence of module categories, Math. J. Okayama Univ. 28 (1986), 147 – 150 (1987). · Zbl 0624.16016 [13] E. C. Lance, Hilbert \?*-modules, London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge, 1995. A toolkit for operator algebraists. · Zbl 0822.46080 [14] A. J. Lazar and D. C. Taylor, Multipliers of Pedersen’s ideal, Mem. Amer. Math. Soc. 5 (1976), no. 169, iii+111. · Zbl 0322.46063 [15] Nobuo Nobusawa, \Gamma -rings and Morita equivalence of rings, Math. J. Okayama Univ. 26 (1984), 151 – 156. · Zbl 0602.16033 [16] M. Parvathi and A. Ramakrishna Rao, Morita equivalence for a larger class of rings, Publ. Math. Debrecen 35 (1988), no. 1-2, 65 – 71. · Zbl 0682.16031 [17] Gert K. Pedersen, \?*-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. · Zbl 0416.46043 [18] N. Christopher Phillips, A new approach to the multipliers of Pedersen’s ideal, Proc. Amer. Math. Soc. 104 (1988), no. 3, 861 – 867. · Zbl 0694.46037 [19] Marc A. Rieffel, Induced representations of \?*-algebras, Advances in Math. 13 (1974), 176 – 257. · Zbl 0284.46040 [20] Marc A. Rieffel, Morita equivalence for \?*-algebras and \?*-algebras, J. Pure Appl. Algebra 5 (1974), 51 – 96. · Zbl 0295.46099 [21] Marc A. Rieffel, Morita equivalence for operator algebras, Operator algebras and applications, Part I (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 285 – 298. [22] Bo Stenström, Rings of quotients, Springer-Verlag, New York-Heidelberg, 1975. Die Grundlehren der Mathematischen Wissenschaften, Band 217; An introduction to methods of ring theory. · Zbl 0296.16001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.