×

New wavelet preconditioner for solving boundary integral equations over nonsmooth boundaries. (English) Zbl 1058.65136

Summary: Matrices obtained by wavelet discretisation of partial differential equations or boundary integral equations (BIEs) are typically sparse with a finger-like sparsity pattern, in contrast to matrices obtained by traditional single scale discretisation, which are dense. In some cases diagonal preconditioning is sufficient, but there are effective preconditioners that can be used when this is not the case. Here, we consider the particular case of BIEs whose boundary has a geometrical singularity, and propose a new preconditioning strategy based on permutations of the unknowns. The strategy’s performance is analysed and compared with related techniques for the double layer equation for Laplace’s equation.

MSC:

65N38 Boundary element methods for boundary value problems involving PDEs
65F35 Numerical computation of matrix norms, conditioning, scaling
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65T60 Numerical methods for wavelets
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/S0168-9274(00)00021-0 · Zbl 0979.65107 · doi:10.1016/S0168-9274(00)00021-0
[2] DOI: 10.1002/cpa.3160440202 · Zbl 0722.65022 · doi:10.1002/cpa.3160440202
[3] Chen K., Electronic Transactions on Numerical Analysis 8 pp 138– (1999)
[4] Dahmen W. Kleemann B. Prössdorf S. Schneider R. (1996) Multiscale methods for the solution of the Helmholtz and Laplace equations (unknown)
[5] Harbrecht H., Technical Report (2000)
[6] DOI: 10.1016/0021-9991(87)90140-9 · Zbl 0629.65005 · doi:10.1016/0021-9991(87)90140-9
[7] Rokhlin V., J. Comput. Phys. 60 pp 197– (1983)
[8] DOI: 10.1216/jiea/1181075850 · Zbl 0838.65111 · doi:10.1216/jiea/1181075850
[9] Rathsfeld A., Technical Report (1997)
[10] DOI: 10.1023/A:1021990422981 · Zbl 0985.65037 · doi:10.1023/A:1021990422981
[11] DOI: 10.1080/00207160304659 · Zbl 1052.65038 · doi:10.1080/00207160304659
[12] DOI: 10.1137/S1064827597330613 · Zbl 0981.65132 · doi:10.1137/S1064827597330613
[13] Chen K., Electron. Trans. Numer. Anal. 2 pp 76– (1994)
[14] DOI: 10.1137/S1064827596304058 · Zbl 0924.65037 · doi:10.1137/S1064827596304058
[15] DOI: 10.1017/CBO9780511626340 · doi:10.1017/CBO9780511626340
[16] Kress R., Linear Integral Equations (1999) · Zbl 0920.45001 · doi:10.1007/978-1-4612-0559-3
[17] von Petersdorff T., Technical Report 95-08 (1995)
[18] DOI: 10.1137/0914010 · Zbl 0771.65088 · doi:10.1137/0914010
[19] von Petersdorff T., Technical Report BN-1157 (1994)
[20] Bernard Carré (1979) Graphs and Networks Oxford University Press
[21] Saad Y., Iterative Methods for Sparse Linear Systems (1996) · Zbl 1031.65047
[22] DOI: 10.1137/0907058 · Zbl 0599.65018 · doi:10.1137/0907058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.