Alzer, Horst; Qiu, Songliang Monotonicity theorems and inequalities for the complete elliptic integrals. (English) Zbl 1059.33029 J. Comput. Appl. Math. 172, No. 2, 289-312 (2004). Summary: We prove monotonicity properties of certain combinations of complete elliptic integrals of the first and second kind, \(\mathcal K\) and \(\mathcal E\). These results lead to sharp symmetrical bounds for \(\mathcal K\) and \(\mathcal E \), which improve recently discovered inequalities. Cited in 113 Documents MSC: 33E05 Elliptic functions and integrals 26D15 Inequalities for sums, series and integrals 33C05 Classical hypergeometric functions, \({}_2F_1\) Keywords:Complete elliptic integrals; Monotonicity; Inequalities; Mean values; Arc length of an ellipse PDF BibTeX XML Cite \textit{H. Alzer} and \textit{S. Qiu}, J. Comput. Appl. Math. 172, No. 2, 289--312 (2004; Zbl 1059.33029) Full Text: DOI Digital Library of Mathematical Functions: §19.9(i) Complete Integrals ‣ §19.9 Inequalities ‣ Legendre’s Integrals ‣ Chapter 19 Elliptic Integrals References: [2] Almkvist, G.; Berndt, B., Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, pi, and the Ladies Diary, Amer. Math. Monthly, 95, 585-608 (1988) · Zbl 0665.26007 [3] Alzer, H., Sharp inequalities for the complete elliptic integral of the first kind, Math. Proc. Cambridge Philos. Soc, 124, 309-314 (1998) · Zbl 0906.33012 [4] Anderson, G. D.; Duren, P.; Vamanamurthy, M. K., An inequality for complete elliptic integrals, J. Math. Anal. Appl, 182, 257-259 (1994) · Zbl 0816.33011 [5] Anderson, G. D.; Qiu, S.-L.; Vamanamurthy, M. K., Elliptic integral inequalities, with applications, Constr. Approx, 14, 195-207 (1998) · Zbl 0901.33011 [6] Anderson, G. D.; Vamanamurthy, M. K.; Vuorinen, M., Dimension-free quasiconformal distortion in \(n\)-space, Trans. Amer. Math. Soc, 297, 687-706 (1986) · Zbl 0632.30022 [7] Anderson, G. D.; Vamanamurthy, M. K.; Vuorinen, M., Sharp distortion theorems for quasiconformal mappings, Trans. Amer. Math. Soc, 305, 95-111 (1988) · Zbl 0639.30019 [9] Anderson, G. D.; Vamanamurthy, M. K.; Vuorinen, M., Special functions of quasiconformal theory, Exposition. Math, 7, 97-136 (1989) · Zbl 0686.30015 [10] Anderson, G. D.; Vamanamurthy, M. K.; Vuorinen, M., Functional inequalities for complete elliptic integrals and their ratios, SIAM J. Math. Anal, 21, 536-549 (1990) · Zbl 0692.33001 [11] Anderson, G. D.; Vamanamurthy, M. K.; Vuorinen, M., Functional inequalities for hypergeometric functions and complete elliptic integrals, SIAM J. Math. Anal, 23, 512-524 (1992) · Zbl 0764.33009 [12] Anderson, G. D.; Vamanamurthy, M. K.; Vuorinen, M., Inequalities for quasiconformal mappings in space, Pacific J. Math, 160, 1-18 (1993) · Zbl 0793.30014 [13] Anderson, G. D.; Vamanamurthy, M. K.; Vuorinen, M., Conformal Invariants, Inequalities, and Quasiconformal Maps (1997), Wiley: Wiley New York · Zbl 0767.30018 [14] Barnard, R. W.; Pearce, K.; Richards, K. C., An inequality involving the generalized hypergeometric function and the arc length of an ellipse, SIAM J. Math. Anal, 31, 693-699 (2000) · Zbl 0943.33002 [15] Barnard, R. W.; Pearce, K.; Richards, K. C., A monotonicity property involving \(_3F_2\) and comparisons of the classical approximations of elliptical arc length, SIAM J. Math. Anal, 32, 403-419 (2000) · Zbl 0983.33006 [16] Borwein, J. M.; Borwein, P. B., The arithmetic-geometric mean and fast computation of elementary functions, SIAM Rev, 26, 351-366 (1984) · Zbl 0557.65009 [17] Borwein, J. M.; Borwein, P. B., Pi and the AGM (1987), Wiley: Wiley New York · Zbl 0699.10044 [18] Borwein, J. M.; Borwein, P. B., Inequalities for compound mean iterations with logarithmic asymptotes, J. Math. Anal. Appl, 177, 572-582 (1993) · Zbl 0783.33001 [19] Bowman, F., Introduction to Elliptic Functions with Applications (1961), Dover: Dover New York · Zbl 0098.28304 [20] Bullen, P. S.; Mitrinović, D. S.; Vasić, P. M., Means and Their Inequalities (1988), Reidel: Reidel Dordrecht · Zbl 0687.26005 [21] Byrd, P. F.; Friedman, M. D., Handbook of Elliptic Integrals for Engineers and Physicists (1971), Springer: Springer Berlin · Zbl 0213.16602 [22] Carlson, B. C., Special Functions of Applied Mathematics (1977), Academic Press: Academic Press New York · Zbl 0394.33001 [23] Carlson, B. C.; Gustafson, J. L., Asymptotic approximations for symmetric elliptic integrals, SIAM J. Math. Anal, 25, 288-303 (1994) · Zbl 0794.41021 [24] Fichtenholz, G. M., Differential- und Integralrechnung II (1979), Dt. Verlag Wissensch: Dt. Verlag Wissensch Berlin · Zbl 0143.27002 [25] Hancock, H., Elliptic Integrals (1917), Wiley: Wiley New York · JFM 46.1469.01 [26] Kühnau, R., Eine Methode, die Positivität einer Funktion zu prüfen, Z. Angew. Math. Mech, 74, 140-142 (1994) · Zbl 0844.65009 [27] Laforgia, A.; Sismondi, S., Some functional inequalities for complete elliptic integrals, Rend. Circ. Mat. Palermo, 41, 302-308 (1992) · Zbl 0759.33009 [28] Leach, E. B.; Sholander, M. C., Extended mean values II, J. Math. Anal. Appl, 92, 207-223 (1983) · Zbl 0517.26007 [29] Lehto, O.; Virtanen, K. I., Quasiconformal Mappings in the Plane (1973), Springer: Springer New York · Zbl 0267.30016 [30] Muir, T., On the perimeter of an ellipse, Mess. Math, 12, 149-151 (1883) [31] Pittenger, A. O., The logarithmic mean in \(n\) variables, Amer. Math. Monthly, 92, 99-104 (1985) · Zbl 0597.26027 [32] Ponnusamy, S.; Vuorinen, M., Asymptotic expansions and inequalities for hypergeometric functions, Mathematika, 44, 278-301 (1997) · Zbl 0897.33001 [33] Qiu, S.-L., Some distortion properties of K-quasiconformal mappings and an improved estimate of Mori’s constant, Acta Math. Sinica, 35, 492-504 (1992), (in Chinese) · Zbl 0778.30021 [34] Qiu, S.-L.; Shen, J.-M., On two problems concerning means, J. Hangzhou Inst. Electr. Eng, 3, 1-7 (1997) [35] Qiu, S.-L.; Vamanamurthy, M. K., Elliptic integrals and the modulus of Grötzsch ring, Panamer. Math. J, 5, 41-60 (1995) · Zbl 0855.33013 [36] Qiu, S.-L.; Vamanamurthy, M. K., Sharp estimates for complete elliptic integrals, SIAM J. Math. Anal, 27, 823-834 (1996) · Zbl 0860.33014 [37] Qiu, S.-L.; Vamanamurthy, M. K.; Vuorinen, M., Some inequalities for the growth of elliptic integrals, SIAM J. Math. Anal, 29, 1224-1237 (1998) · Zbl 0908.33012 [38] Qiu, S.-L.; Vuorinen, M., Quasimultiplicative properties for the \(η\)-distortion function, Complex Variables Theory Appl, 30, 77-96 (1996) · Zbl 0854.30017 [39] Sándor, J., On certain inequalities for means, J. Math. Anal. Appl, 189, 602-606 (1995) · Zbl 0822.26014 [40] Sándor, J., On certain inequalities for means II, J. Math. Anal. Appl, 199, 629-635 (1996) · Zbl 0854.26013 [41] Vamanamurthy, M. K.; Vuorinen, M., Inequalities for means, J. Math. Anal. Appl, 183, 155-166 (1994) · Zbl 0802.26009 [44] Whittaker, E. T.; Watson, G. N., A Course of Modern Analysis (1958), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0108.26903 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.