×

A general maximum likelihood analysis of variance components in generalized linear models. (English) Zbl 1059.62564

Summary: This paper describes an EM algorithm for nonparametric maximum likelihood (ML) estimation in generalized linear models with variance component structure. The algorithm provides an alternative analysis to approximate MQL and PQL analyses [C. A. McGilchrist and C. W. Aisbett, Biom. J. 33, No. 2, 131–141 (1991; Zbl 0729.62566); N. E. Breslow and D. G. Clayton, J. Am. Stat. Assoc. 88, No. 421, 9–25 (1993; Zbl 0775.62195); C. A. McGilchrist, J. R. Stat. Soc., Ser. B 56, No. 1, 61–69 (1994; Zbl 0800.62433); H. Goldstein, Multilevel Statistical Models (1995)] and to GEE [analyses K.-Y. Liang and S. L. Zeger, Biometrika 73, 13–22 (1986; Zbl 0595.62110)]. The algorithm, first given by Hinde and Wood [Longitudinal data analysis, 110–126 (1987)], is a generalization of that for random effect models for overdispersion in generalized linear models, described in Aitkin [Statistics and Computing 6, 251–262 (1996)]. The algorithm is initially derived as a form of Gaussian quadrature assuming a normal mixing distribution, but with only slight variation it can be used for a completely unknown mixing distribution, giving a straightforward method for the fully nonparametric ML estimation of this distribution. This is of value because the ML estimates of the GLM parameters can be sensitive to the specification of a parametric form for the mixing distribution. The nonparametric analysis can be extended straightforwardly to general random parameter models, with full NPML estimation of the joint distribution of the random parameters. This can produce substantial computational saving compared with full numerical integration over a specified parametric distribution for the random parameters. A simple method is described for obtaining correct standard errors for parameter estimates when using the EM algorithm. Several examples are discussed involving simple variance component and longitudinal models, and small-area estimation.

MSC:

62J12 Generalized linear models (logistic models)
62J10 Analysis of variance and covariance (ANOVA)
62G08 Nonparametric regression and quantile regression

Software:

GLIM
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abramowitz M., Handbook of Mathematical Functions (1964) · Zbl 0171.38503
[2] Aitkin M., Statistics and Computing 6 pp 251– (1996)
[3] Aitkin M., Statistics and Computing 6 pp 127– (1996)
[4] Aitkin M., The GLIM Newsletter 25 pp 37– (1995)
[5] M. Aitkin, and B. J. Francis (1998 ). Fitting generalized linear variance component models by nonparametric maximum likelihood .The GLIM Newsletter, in press.
[6] Aitkin M., Technometrics 22 pp 325– (1980)
[7] Aitkin M., Statistical Modelling in GLIM (1989) · Zbl 0676.62001
[8] Anderson D. A., Australian Journal of Statistics 30 pp 125– (1988)
[9] Anderson D. A., Journal of the Royal Statistical Society, Series B 47 pp 203– (1985)
[10] Anderson D. A., Communications in Statistics-Theory and Methods 17 pp 3847– (1988)
[11] Barry J. T., Statistical Modelling (1989)
[12] Besag J., Annals of the Institute of Statistical Mathematics 43 pp 1– (1991)
[13] Bock R. D., Psychometrika 46 pp 443– (1981)
[14] Bohning D., Biometrics 48 pp 285– (1992)
[15] Breslow N. E., Journal of the American Statistical Association 88 pp 9– (1993)
[16] Clayton D., Biometrics 43 pp 671– (1987)
[17] Crouch E. A. C., Journal of the American Statistical Association 85 pp 464– (1990)
[18] Davidian M., Biometrika 80 pp 475– (1993)
[19] Davies R. B., Longitudinal Data Analysis (1987)
[20] Dempster A. P., Journal of the Royal Statistical Society, Series B 39 pp 1– (1977)
[21] Dietz E., Advances in GLIM and Statistical Modelling (1992)
[22] E. Dietz, D. Bohning, B. J. Francis, R. Hatzinger, G. U. H. Seeber, and G. Steckel-Berger (1995 ). Statistical inference based on a general model of unobserved heterogeneity . InStatistical inference based on a general model of unobserved heterogeneity , New York: Springer-Verlag.
[23] Diggle P. J., Analysis of Longitudinal Data (1994) · Zbl 0825.62010
[24] Ezzet F., A Manual for MIXTURE (1988)
[25] Fitzmaurice G. M., Biometrics 50 pp 601– (1994)
[26] Follmann D. A., Journal of the American Statistical Association 84 pp 295– (1989)
[27] Gelman A., Bayesian Data Analysis (1995)
[28] Goldstein H., Multilevel Statistical Models, 2. ed. (1995) · Zbl 1014.62126
[29] Heckman J. J., Econometrica 52 pp 271– (1984)
[30] Hinde J. P., GLIM82 (1982)
[31] Hinde J. P., Longitudinal Data Analysis (1987)
[32] Kiefer J., Annals of Mathematical Statistics 27 pp 887– (1956)
[33] Laird N. M., Journal of the American Statistical Association 73 pp 805– (1978)
[34] Laird N. M., Biometrics 38 pp 963– (1982)
[35] Lee Y., Journal of the Royal Statistical Society, Series B 58 pp 619– (1996)
[36] Lesperance M. L., Journal of the American Statistical Association 87 pp 120– (1992)
[37] Liang K.-Y., Biometrika 73 pp 13– (1986)
[38] Lindsay B. G., Annals of Statistics 11 pp 86– (1983)
[39] Longford N. T., Random Coefficient Models (1993) · Zbl 0859.62064
[40] Louis T. A., Journal of the Royal Statistical Society, Series B 44 pp 226– (1982)
[41] McCullagh P., Generalized Linear Models (1989) · Zbl 0744.62098
[42] McCulloch C. E., Journal of the American Statistical Association 92 pp 162– (1997)
[43] McGilchrist C. A., Journal of the Royal Statistical Society, Series B 56 pp 61– (1994)
[44] McGilchrist C. A., Biometrical Journal 33 pp 131– (1991)
[45] Magder L. S., Journal of the American Statistical Association 91 pp 1141– (1996)
[46] Mallet A., Biometrika 73 pp 645– (1986)
[47] Meng X. L., Journal of the American Statistical Association 86 pp 899– (1991)
[48] Neuhaus J. M., Statistical Methods in Medical Research 1 pp 249– (1992)
[49] Neuhaus J. M., Biometrics 46 pp 523– (1990)
[50] Rodriguez G., Journal of the Royal Statistical Society, Series A 158 pp 73– (1995) · Zbl 04523393
[51] DOI: 10.1016/0096-3003(91)90077-Z · Zbl 0741.65111
[52] Steele B. M., Biometrics 52 pp 1295– (1996)
[53] Tsutakawa R. K., Biometrics 41 pp 69– (1985)
[54] Walker S., Biometrics 52 pp 934– (1996)
[55] Woolson R. F., Journal of the Royal Statistical Society, Series A 147 pp 87– (1984)
[56] Yusuf S., Progress in Cardiovascular Diseases 27 pp 335– (1985)
[57] Zackin R., Journal of the American Statistical Association 91 pp 52– (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.