Li, Zhigang; Xu, Daolin A secure communication scheme using projective chaos synchronization. (English) Zbl 1060.93530 Chaos Solitons Fractals 22, No. 2, 477-481 (2004). Summary: Most secure communication schemes using chaotic dynamics are based on identical synchronization. In this paper, we show the possibility of secure communication using projective synchronization (PS). The unpredictability of the scaling factor in projective synchronization can additionally enhance the security of communication. It is also showed that the scaling factor can be employed to improve the robustness against noise contamination. The feasibility of the communication scheme in high-dimensional chaotic systems, such as the hyperchaotic Rössler system, is demonstrated. Numerical results show the success in transmitting a sound signal through chaotic systems. Cited in 63 Documents MSC: 93C10 Nonlinear systems in control theory 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior PDF BibTeX XML Cite \textit{Z. Li} and \textit{D. Xu}, Chaos Solitons Fractals 22, No. 2, 477--481 (2004; Zbl 1060.93530) Full Text: DOI References: [1] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys. Rev. Lett., 64, 821-824 (1990) · Zbl 0938.37019 [2] Kocarev, L.; Halle, K. S.; Eckert, K.; Chua, L. O.; Parlitz, U., Experimental demonstration of secure communications via chaotic synchronization, Int. J. Bifurcat. Chaos, 2, 709-713 (1992) · Zbl 0875.94134 [3] Parlitz, U.; Chua, L.; Kocarev, L. J.; Halle, K. S.; Shang, A., Transmission of digital signals by chaotic synchronization, Int. J. Bifurcat. Chaos, 2, 973-977 (1992) · Zbl 0870.94011 [4] Cuomo, K. M.; Oppenheim, A. V., Circuit implementation of synchronized chaos with applications to communications, Phys. Rev. Lett., 71, 65-68 (1993) [5] Lu, J.; Wu, X. Q.; Lu, J. H., Synchronization of a unified chaotic system and the application in secure communication, Phys. Lett. A, 305, 365-370 (2002) · Zbl 1005.37012 [6] Cuomo, K. M.; Oppenheim, A. V.; Strogatz, S. H., Robustness and signal recovery in a synchronized chaotic system, Int. J. Bifurcat. Chaos, 3, 1629 (1993) · Zbl 0884.94008 [7] Feki, M.; Robert, B.; Gelle, G.; Colas, M., Secure digital communication using discrete-time chaos synchronization, Chaos, Solitons & Fractals, 18, 881-890 (2003) · Zbl 1069.94016 [8] Kocarev, L.; Parlitz, U., General approach for chaotic synchronization with applications to communication, Phys. Rev. Lett., 74, 5028-5031 (1995) [9] Parlitz, U.; Kocarev, L.; Stojanovski, T.; Preckel, H., Encoding messages using chaotic synchronization, Phys. Rev. E, 53, 4351-4361 (1996) [10] Yang, T.; Chua, L. O., Channel-independent chaotic secure communication, Int. J. Bifurcat. Chaos, 6, 2653-2660 (1996) · Zbl 1298.94112 [11] Xiao, J. H.; Hu, G.; Qu, Z. L., Synchronization of spatiotemporal chaos and its application to multichannel pread-spectrum communication, Phys. Rev. Lett., 77, 4162-4165 (1996) [12] Boccaletti, S.; Farini, A.; Arecchi, F. T., Adaptive synchronization of chaos for secure communication, Phys. Rev. E, 55, 4979-4981 (1997) [13] Carroll, T. L.; Pecora, L. M., Synchronizing hyperchaotic volume-preserving maps and circuits, IEEE Trans. Circuits Systems I-Fundament. Theory Appl., 45, 656-659 (1998) [14] Minai, A. A.; Anand, T., Synchronization of chaotic maps through a noisy coupling channel with application to digital communication, Phys. Rev. E, 59, 312-320 (1999) [15] Sundar, S.; Minai, A. A., Synchronization of randomly multiplexed chaotic systems with application to communication, Phys. Rev. Lett., 85, 5456-5459 (2000) [16] Garcia-Ojalvo, J.; Roy, R., Spatiotemporal communication with synchronized optical chaos, Phys. Rev. Lett., 86, 5204-5207 (2001) [17] Short, K. M., Steps toward unmasking secure communications, Int. J. Bifurcat. Chaos, 4, 959-977 (1994) · Zbl 0875.94002 [18] Perez, G.; Cerdeira, H. A., Extracting messages masked by chaos, Phys. Rev. Lett., 74, 1970-1973 (1995) [19] Short, K. M., Unmasking a modulated chaotic communications scheme, Int. J. Bifurcat. Chaos, 6, 367-375 (1996) · Zbl 0870.94004 [20] Mainieri, R.; Rehacek, J., Projective synchronization in three-dimensional chaotic systems, Phys. Rev. Lett., 82, 3042-3045 (1999) [21] Li, Z. G.; Xu, D. L., Stability criterion for projective synchronization in three-dimensional chaotic systems, Phys. Lett. A, 282, 175-179 (2001) · Zbl 0983.37036 [22] Xu, D. L., Control of projective synchronization in chaotic systems, Phys. Rev. E, 63, 027201 (2001) [23] Xu, D. L.; Li, Z. G.; Bishop, S. R., Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems, Chaos, 11, 439-442 (2001) · Zbl 0996.37075 [24] Xu, D. L.; Li, Z. G., Controlled projective synchronization in nonpartially-linear chaotic systems, Int. J. Bifurcat. Chaos, 12, 1395-1402 (2002) [25] Xu, D. L.; Ong, W. L.; Li, Z. G., Criteria for the occurrence of projective synchronization in chaotic systems of arbitrary dimension, Phys. Lett. A, 305, 167-172 (2002) · Zbl 1001.37026 [26] Kocarev, L.; Parlitz, U.; Stojanovski, T., An application of synchronized chaotic dynamic arrays, Phys. Lett. A, 217, 280-284 (1996) [27] Carroll, T. L.; Heagy, J. F.; Pecora, L. M., Transforming signals with chaotic synchronization, Phys. Rev. E, 54, 4676-4680 (1996) [28] Lorenz, E. N., Deterministic non-periodic flow, J. Atmos. Sci., 20, 130-141 (1963) · Zbl 1417.37129 [29] Rössler, O. E., An equation for hyperchaos, Phys. Lett. A, 71, 155-167 (1976) · Zbl 0996.37502 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.