×

On planar Cremona maps of prime order. (English) Zbl 1062.14019

The Cremona group \(\text{Bir}(\mathbb{P}^2)\) has been studied for a long time. Their modern treatment, using Mori theory, has been done in L. Bayle and A. Beauville [Asian J Math 4, 11–17 (2000; Zbl 1055.14012)] (order \(n = 2\)), D.-Q. Zhang [J. Algebra 238, 560–589 (2001; Zbl 1057.14053)] (general \(n\)) and the current paper under review. The result in theorems A and B of the article is the classification of minimal pairs \((X, \sigma)\) where \(X\) is a smooth projective surface with non-nef \(K_X\) and \(\sigma \in \text{Aut}(X)\) is of prime order \(p\); see the article for the list (the equations of the surfaces and the actions on the coordinates are also given). As a consequence, the author gives the complete classification of Cremona transformations of prime order in \(\mathbb{P}^2\) (theorem E), where the un-resolved case \(E4\) has been proved by Bayle-Beauville [loc. cit.] to be conjugate to a linear automorphism of \(\mathbb{P}^2\). The author also describes (theorem F) the moduli spaces of conjugacy classes of prime order cyclic subgroups of \(\text{Bir}(\mathbb{P}^2)\). The reader will gain a lot more by reading the article.

MSC:

14E07 Birational automorphisms, Cremona group and generalizations
14E20 Coverings in algebraic geometry
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1006/jabr.1996.6968 · Zbl 0910.14021 · doi:10.1006/jabr.1996.6968
[2] Mayer & Müller (1895)
[3] Algebraic geometry, Graduate Texts in Mathematics, No. 52 pp xvi– (1977)
[4] Acad. Roy. Belgique. Cl. Sci. Mém. Coll. in 8{\(\deg\)}. (2) 24 pp 31– (1949)
[5] (2001)
[6] Izv. Akad. Nauk SSSR Ser. Mat. 44 pp 110– (1980)
[7] DOI: 10.1007/s102310100037 · Zbl 1172.14329 · doi:10.1007/s102310100037
[8] London Mathematical Society Lecture Note Series 155 (1990)
[9] DOI: 10.1007/BF02419297 · JFM 30.0559.02 · doi:10.1007/BF02419297
[10] J. Reine Angew. Math. 196 pp 59– (1956)
[11] DOI: 10.1007/BF02420790 · doi:10.1007/BF02420790
[12] Algebraic Geometry, a Volume in Memory of Paolo Francia (2002)
[13] Preprint available at ArXiv:math.AG/0402037
[14] DOI: 10.1007/BF03012845 · JFM 31.0658.02 · doi:10.1007/BF03012845
[15] Asian J. Math. 4 pp 11– (2000) · Zbl 1055.14012 · doi:10.4310/AJM.2000.v4.n1.a2
[16] Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (1984)
[17] J. Math. Pures et Appl (1885)
[18] Lectures Notes in Math. 1769 (2002)
[19] Trans. Amer. Math. Soc. 354 pp 4831– (2002)
[20] DOI: 10.1006/jabr.2000.8673 · Zbl 1057.14053 · doi:10.1006/jabr.2000.8673
[21] Math. Ann. 4 (1897)
[22] The non-singular cubic surface (1942)
[23] DOI: 10.2307/2007050 · Zbl 0557.14021 · doi:10.2307/2007050
[24] DOI: 10.1007/BF01160474 · Zbl 0652.14003 · doi:10.1007/BF01160474
[25] 4 (1974)
[26] DOI: 10.1070/SM1967v001n02ABEH001972 · Zbl 0182.23701 · doi:10.1070/SM1967v001n02ABEH001972
[27] Translated from the 1998 Japanese original pp viii– (1998)
[28] DOI: 10.1016/0021-8693(88)90196-2 · Zbl 0663.14033 · doi:10.1016/0021-8693(88)90196-2
[29] DOI: 10.1006/jabr.1996.0331 · Zbl 0884.14018 · doi:10.1006/jabr.1996.0331
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.