×

Modified extended tanh-function method and its applications to nonlinear equations. (English) Zbl 1062.35082

Summary: New exact travelling wave solutions for the generalized shallow water wave equation, the improved Boussinesq equation and the coupled system for the approximate equations for water waves are found using a modified extended tanh-function method. The obtained results include rational, periodic, singular and solitary wave solutions.

MSC:

35Q35 PDEs in connection with fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction

Software:

MACSYMA; RATH
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fan, E., Phys. Lett. A, 277, 212 (2000) · Zbl 1167.35331
[2] Fan, E., Z. Naturforsch, 56a, 312 (2001)
[3] Elwakil, S. A.; Elabany, S. K.; Zahran, M. A.; Sabry, R., Phys. Lett. A, 299, 179 (2002) · Zbl 0996.35043
[4] Whitham, G. B., Linear and Nonlinear Waves (1974), Wiley: Wiley New York · Zbl 0373.76001
[5] Clarkson, P. A.; Mansfield, E. L., Nonlinearity, 7, 975 (1994) · Zbl 0803.35111
[6] J. Hietarinta, Partially Integrable Evolution Equations in Physics, in: R. Conte, N. Boccara (Eds.), NATO ASI Series C: Mathematical and Physical Sciences, vol 310, Dordrecht: Kluwer, 1990, pp. 459-478; J. Hietarinta, Partially Integrable Evolution Equations in Physics, in: R. Conte, N. Boccara (Eds.), NATO ASI Series C: Mathematical and Physical Sciences, vol 310, Dordrecht: Kluwer, 1990, pp. 459-478 · Zbl 0717.58024
[7] R. Hirota, Solitons, in: R.K. Bullough, P.J. Caudrey (Eds.), Topics in Current Physics, vol 17, Springer, Berlin, 1980, pp. 157-176; R. Hirota, Solitons, in: R.K. Bullough, P.J. Caudrey (Eds.), Topics in Current Physics, vol 17, Springer, Berlin, 1980, pp. 157-176 · Zbl 0428.00010
[8] Clarkson, P. A.; LeVeque, R. J.; Saxton, R., Stud. Appl. Nath, 75, 95 (1987)
[9] Soerensen, M. P.; Christiansen, P. L.; Lomdahl, P. S., J. Acoust. Soc. Am, 76, 871 (1984) · Zbl 0564.73035
[10] Soerensen, M. P.; Christiansen, P. L.; Lomdahl, P. S.; Skovgaard, O., J. Acoust. Soc. Am, 81, 1718 (1987)
[11] Christiansen, P. L.; Muto, V., Physica D, 68, 93 (1993) · Zbl 0800.92024
[12] Muto, V.; Halding, J.; Christiansen, P. L.; Scott, A. C., J. Biomol. Struct. Dyn, 4, 873 (1988)
[13] Whitham, G. B., Proc. R. Soc. A, 299, 6 (1967) · Zbl 0163.21104
[14] Broer, L. T.F., Appl. Sci. Res, 31, 377 (1975) · Zbl 0326.76017
[15] Kupershmidt, B. A., Commun. Math. Phys, 99, 51 (1985) · Zbl 1093.37511
[16] Wang, M.; Zhou, Y.; Li, Z., Phys. Lett. A, 216, 67-75 (1996) · Zbl 1125.35401
[17] Fan, E., Phys. Lett. A, 300, 243 (2002) · Zbl 0997.34007
[18] Fan, E.; Hon, Y. C., Appl. Math. Comput, 141, 351 (2003) · Zbl 1027.65128
[19] Elwakil, S. A.; El-Labany, S. K.; Zahran, M. A.; Sabry, R., Chaos, Solitons Fractals, 17, 121 (2003) · Zbl 1033.76007
[20] Elwakil, S. A.; El-Labany, S. K.; Zahran, M. A.; Sabry, R., Z. Naturforsch, 58a, 39 (2003)
[21] Gudkov, V. V., J. Math. Phys, 38, 4794 (1997) · Zbl 0886.35131
[22] Adler, M.; Moser, J., Commun. Math. Phys, 19, 1 (1978)
[23] Nakamura, A.; Hirota, R., J. Phys. Soc. Jpn, 54, 491 (1985)
[24] Sachs, R. L., Physica D, 30, 1 (1988) · Zbl 0694.35207
[25] Fan, E.; Chao, L., Phys. Lett. A, 285, 373 (2001) · Zbl 0969.35543
[26] Smyth, N. F., J. Aust. Math. Soc. B, 33, 403 (1992) · Zbl 0758.35042
[27] Kudryashov, N. A.; Zargayan, D., J. Phys. A: Math. Gen, 29, 8067 (1996) · Zbl 0901.35090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.