×

Theories and finite elements for multilayered anisotropic, composite plates and shells. (English) Zbl 1062.74048

The paper is a review of available theories and finite elements, FEs, that have been developed for multilayered anisotropic composite plate and shell structures. 325 books and papers have been used by the author. Of all the possible topics, this review covers mainly the aspects related to two-dimensional modeling of layered structures and to finite element implementations. The paper has been divided into three parts.
Part I is devoted to the description and development of possible approaches to plate and shell structures. Complicating effects that have been introduced by anisotropic behavior and layered constructions, such as high transverse deformabilty, zig-zag effects and interlaminar continuity, have been discussed.
Two-dimensional theories have been dealt with in Part II. Contributions based on axiomatic, asymptotic and continuum based approaches have been overviewed. Classical theories and their refinements are considered. Both cases of equivalent single-layer and layer-wise variables descriptions are discussed. The three possible zig-zag approaches (Lekhnitskii-Ren, Ambartsumian-Whitney-Rath-Das, Reissner-Murakami-Carrera) have been discussed.
FE implementations are examined in Part III. The possible developments of finite elements for layered plates and shells are outlined. FEs based on the theories considered in Part II are discussed along with those approaches which consist in a specific application of FE techniques, such as hybrid methods and so-called global/local techniques. The author describes the extension of FEs that were originally developed for isotropic one-layered structures to multilayered plates and shells. Development of available zig-zag FEs has been considered for the three above cases of zig-zag theories. FEs based on other approaches are also discussed. Unfortunately, the paper does not report on numerical results and assessments for the reviewed theories and FEs.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K20 Plates
74K25 Shells
74-02 Research exposition (monographs, survey articles) pertaining to mechanics of deformable solids
74E30 Composite and mixture properties
74E10 Anisotropy in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bogdonovic, A. E.; Sierakowsky, R., Composite Materials and Structures: Science Technology and Application, Applied Mechanics Review, 52, 551-366 (1999)
[2] Naghdi, P. M., A survey of recent progress in the theory of elastic shells, Applied Mechanics Review, 9, 365-368 (1956)
[3] Ambartusumyan, S. A., Contributions to the theory of anisotropic layered shells, Applied Mechanics Review, 15, 345-249 (1962)
[4] Bert, C. W.E., A critical evaluations of new plate theories applied to laminated composites, Composite Structures, 38, 329-347 (1984) · doi:10.1016/0263-8223(84)90004-7
[5] Reissner, E., Reflections on the theory of elastic plates, Applied Mechanics Review, 38, 1453-1464 (1985)
[6] Librescu, L.; Reddy, J. N.; Elishakoff; Irretier, A Critical Review and Generalization of Transverse Shear Deformable Anisotropic Plates, 32-43 (1986), Berlin: Springer Verlag, Berlin
[7] Grigolyuk, E. I.; Kulikov, G. M., General Direction of the Development of the Theory of Shells, Mekhanica Kompozitnykh Materialov, 2, 287-298 (1988)
[8] Kapania, R. K.; Raciti, S., Recent advances in analysis of laminated beams and plates. Part I. Shear Effects and Buckling. Part II. Vibrations and wave propagations, American Institute of Aeronautics and Astronautics Journal, 27, 923-946 (1989) · Zbl 0674.73047
[9] Kapania, R. K., A Review on the Analysis of Laminated Shells, Journal of Pressure Vessel Technology, 111, 88-96 (1989)
[10] Noor, A. K.; Burton, W. S., Assessment of shear deformation theories for multilayered composite plates, Applied Mechanics Review, 41, 1-18 (1989)
[11] Reddy, J. N., On computational models for composite laminate, International Journal for Numerical Methods in Engineering, 27, 361-382 (1989) · Zbl 0724.73234 · doi:10.1002/nme.1620270210
[12] Noor, A. K.; Burton, W. S., Assessment of computational models for multilayered composite shells, Applied Mechanics Review, 43, 67-97 (1990)
[13] Reddy, J. N.; Robbins, D. H., Theories and computational models for composite laminates, Applied Mechanics Review, 47, 147-165 (1994)
[14] Noor, A. K.; Burton, S.; Bert, C. W., Computational model for sandwich panels and shells, Applied Mechanics Review, 49, 155-199 (1996)
[15] Varadan, T. K.; Bhaskar, K., Review of different theories for the analysis of composites, Journal of Aerospace Society of India, 49, 202-208 (1997)
[16] Carrera, E., An assessment of mixed and classical theories for thermal stress analysis of orthotropic plates, Journal of Thermal Stress, 23, 797-831 (2000) · doi:10.1080/014957300750040096
[17] Carrera, E., An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates, Composite Structures, 40, 183-198 (2000) · doi:10.1016/S0263-8223(00)00099-4
[18] Yang, H. T.; Saigal, S.; Masud, A.; Kapania, R. K., A survey of recent shell finite elements, International Journal for Numerical Methods in Engineering, 47, 101-127 (2000) · Zbl 0987.74001 · doi:10.1002/(SICI)1097-0207(20000110/30)47:1/3<101::AID-NME763>3.0.CO;2-C
[19] Carrera, E., Developments, ideas and evaluations based upon Reissner’s Mixed Variational Theorem in the Modeling of Multilayered Plates and Shells, Applied Mechanics Review, 54, 301-329 (2001) · doi:10.1115/1.1385512
[20] Carrera, E., “A Historical Review of Zig-Zag Theories for Multilayered Plates and Shell”,Applied Mechanics Review, to be printed.
[21] Goldenvaizer, A. L., Theory of thin elastic shells (1961), New York: Pergamon Press, New York
[22] Kraus, H., Thin elastic shells (1967), N.Y.: John Wiley, N.Y. · Zbl 0266.73052
[23] Lekhnitskii, S.G. (1968),Anisotropic Plates, 2nd Ed., Translated from the 2nd Russian Ed. by S.W. Tsai and Cheron, Bordon and Breach.
[24] Ambartsumian, S.A. (1969),Theory of anisotropic plates, Translated from Russian by T. Cheron and Edited by J.E. Ashton Tech. Pub. Co.
[25] Jones, R. M., Mechanics of Composite Materials (1975), New York: McGraw-Hill, New York
[26] Librescu, L., Elasto-statics and Kinetics of Anisotropic and Heterogeneous Shell-Type Structures (1975), Leyden, Netherland: Noordhoff Int., Leyden, Netherland · Zbl 0335.73027
[27] Palazotto, A.N. and Dennis, S.T. (1992),Nonlinear analysis of shell structures, AIAA Series. · Zbl 0798.73003
[28] Reddy, J.N. (1997),Mechanics of Laminated Composite Plates, Theory and Analysis, CRC Press. · Zbl 0899.73002
[29] Pagano, N. J., Exact solutions for Composite Laminates in Cylindrical Bending, Journal of Composite Materials, 3, 398-411 (1969) · doi:10.1177/002199836900300304
[30] Pagano, N. J., Exact solutions for rectangular bi-direction composites and sandwich plates, Journal of Composite Materials, 4, 20-34 (1970)
[31] Pagano, N. J.; Hatfield, S. J., Elastic Behavior of Multilayered Bidirectional Composites, American Institute of Aeronautics and Astronautics Journal, 10, 931-933 (1972)
[32] Noor, A. K.; Rarig, P. L., Three-Dimensional Solutions of Laminated Cylinders, Computer Methods in Applied Mechanics and Engineering, 3, 319-334 (1974) · Zbl 0278.73061 · doi:10.1016/0045-7825(74)90017-6
[33] Noor, A. K., Free vibrations of multilayerd composite plates, American Institute of Aeronautics and Astronautics Journal, 11, 1038-1039 (1973)
[34] Pagano, N. J., Stress fields in composite laminates, International Journal of Solids and Structures, 14, 385-400 (1978) · Zbl 0377.73079 · doi:10.1016/0020-7683(78)90020-3
[35] Ren, J. G., Exact Solutions for Laminated Cylindrical Shells in Cylindrical Bending, Composite Science and Technology, 29, 169-187 (1987) · doi:10.1016/0266-3538(87)90069-8
[36] Varadan, T. K.; Bhaskar, K., Bending of Laminated Orthotropic Cylindrical Shells—An Elasticity Aroach, Composite Structures, 17, 141-156 (1991) · doi:10.1016/0263-8223(91)90067-9
[37] Bhaskar, K.; Varadan, T. K., Exact elasticity solution for Laminated Anisotropic Cylindrical Shells, JAM, 60, 41-47 (1993) · Zbl 0800.73226
[38] Bhaskar, K.; Varadan, T. K., Benchmark elasticity solutions for locally loaded laminated orthotropic Cylindrical Shells, American Institute of Aeronautics and Astronautics Journal, 32, 627-632 (1994) · Zbl 0800.73210
[39] Ye, J. Q.; Soldatos, K. P., Three-dimensional vibration of laminated cylinders and cylindrical panels with symmetric or antisymmetric cross-ply lay-up, Composite Engineering, 4, 429-444 (1994)
[40] Teo, T. M.; Liew, K. M., Three-dimensional elasticity solutions to some orthotropic plate problems, International Journal of Solids and Structures, 36, 5301-5326 (1999) · Zbl 0931.74080 · doi:10.1016/S0020-7683(98)00240-6
[41] Meyer-Piening, H. R.; Stefanelli, R., Stresses, deflections, buckling and frequencies of a cylindrical curved rectangular sandwich panel based on the elasticity solutions, Proceedings of the Fifth International Conference On Sandwich Constructions, Zurich, Switzerland, September 5-7, II, 705-716 (2000)
[42] Meyer-Piening, H. R., Experiences with ‘Exact’ linear sandwich beam and plate analyses regarding bending, instability and frequency investigations, Proceedings of the Fifth International Conference On Sandwich Constructions, Zurich, Switzerland, September 5-7, I, 37-48 (2000)
[43] Anderson, T.; Madenci, E.; Burton, S. W.; Fish, J. C., Analytical Solutions of Finite-Geometry Composite Panels under Transient Surface Loadings, International Journal of Solids and Structures, 35, 1219-1239 (1998) · Zbl 0934.74019 · doi:10.1016/S0020-7683(97)82761-8
[44] Koiter, W.T. (Ed.) (1960), “Theory of thin elastic shells”, Proceedings ofFirst IUTAM Symposium, Delft 1959, North Holland.
[45] Niordson, F. I., Theory of thin shells (1967), Berlin: Springer Verlag, Berlin · Zbl 0179.30803
[46] Koiter, W. T., A Consistent First Approximations in the General Theory of Thin Elastic Shells, 12-23 (1960), Amsterdam: North-Holland, Amsterdam · Zbl 0109.43002
[47] Goldenvaizer, A. L., Problem in the rigorous deduction of theory of thin elastic shells, 31-38 (1967), Cophenagen: Springer Verlag, Cophenagen · Zbl 0187.46603
[48] John, F., Refined interior shell equations, 1-14 (1967), Cophenagen: Springer Verlag, Cophenagen · Zbl 0265.73076
[49] Green, A. E.; Naghdi, P. M., Shells in the light of generalized continua, 39-58 (1967), Cophenagen: Springer Verlag, Cophenagen · Zbl 0194.28703
[50] Reissner, E., On the foundation of generalized linear shell theory, 15-30 (1967), Cophenagen: Springer Verlag, Cophenagen
[51] Cosserat, E.; Cosserat, F., Theories des corps deformable, Traite de Physique (1999), Paris: Chwolson, Paris · JFM 40.0862.02
[52] Cicala, P. (1959), “Sulla teoria elastica della parete sottile”,Giornale del Genio Civile, fascicoli 4, 6 e 9. · Zbl 0100.37203
[53] Cicala, P., Systematic approach to linear shell theory (1965), Torino: Levrotto & Bella, Torino
[54] Antona, E. (1991), “Mathematical model and their use in Engineering”, Published inApplied Mathematics in the Aerospace Science/Engineering, Edited by Miele, A. and Salvetti, A.,44, 395-433. · Zbl 0852.73004
[55] Reissner, E., On a certain mixed variational theory and a proposed application, International Journal for Numerical Methods in Engineering, 20, 1366-1368 (1984) · Zbl 0535.73017 · doi:10.1002/nme.1620200714
[56] Reissner, E., On a mixed variational theorem and on a shear deformable plate theory, International Journal for Numerical Methods in Engineering, 23, 193-198 (1986) · Zbl 0579.73018 · doi:10.1002/nme.1620230203
[57] Reissner, E., On a certain mixed variational theorem and on laminated elastic shell theory, Proceedings of the Euromech-Colloquium, 219, 17-27 (1986)
[58] Washizu, K., Variational Methods in Elasticity and Plasticity (1968), N.Y.: Pergamon Press, N.Y. · Zbl 0164.26001
[59] Atluri, S.N., Tong, P. and Murakawa, H. (1983), “Recent studies in Hybrid and Mixed Finite element Methods in Mechanics”, inHybrid and Mixed Finite Element Methods, Edited by Atluri, S.N., Callagher, R.H. and Zienkiewicz, O.C., John Wiley and Sons, Ltd, 51-71.
[60] Barbero, E. J.; Reddy, J. N.; Teply, J. L., General Two-Dimensional Theory of laminated Cylindrical Shells, American Institute of Aeronautics and Astronautics Journal, 28, 544-553 (1990) · Zbl 0699.73042
[61] Nosier, A.; Kapania, R. K.; Reddy, J. N., Free Vibration Analysis of Laminated Plates Using a Layer-Wise Theory, American Institute of Aeronautics and Astronautics Journal, 31, 2335-2346 (1993) · Zbl 0793.73052
[62] Carrera, E., A class of two-dimensional theories for anisotropic multilayered plates analysis, Accademia delle Scienze di Torino, Memorie Scienze Fisiche, 19-20, 1-39 (1995)
[63] Carrera, E., C_z^0 Requirements—Models for the two dimensional analysis of multilayered structures, Composite Structures, 37, 373-384 (1997) · doi:10.1016/S0263-8223(98)80005-6
[64] Librescu, L., Refined geometrically non-linear theories of anisotropic laminated shells, Quarterly of Applied Mathematics, 55, 1-22 (1987) · Zbl 0632.73048
[65] Sun, C. T.; Chin, H., Analysis of asymmetric composite laminates, American Institute of Aeronautics and Astronautics Journal, 26, 714-718 (1987)
[66] Carrera, E. (1991), “Postbuckling behaviors of multilayered shells”,Ph. Dissertation, DIASP, Politecnico di Torino.
[67] Chen, H. P.; Shu, J. C., Cylindrical bending of unsymmetric composite laminates, American Institute of Aeronautics and Astronautics Journal, 30, 1438-1440 (1992)
[68] Carrera, E., Nonlinear Response of asymmetrically laminated plates in cylindrical bending, American Institute of Aeronautics and Astronautics Journal, 31, 1353-1357 (1993)
[69] Carrera, E., Reply by the author to C.T. Sun, American Journal of Aeronautics and Astronautics, 32, 2135-2136 (1994)
[70] Cauchy, A. L., Sur l’equilibre et le mouvement d’une plaque solide, Execrises de Matematique, 3, 328-355 (1828)
[71] Poisson, S. D., Memoire sur l’equilibre et le mouvement des corps elastique, Mem. Acad. Sci., 8, 357-357 (1829)
[72] Kirchhoff, G., Über das Gleichgewicht und die Bewegung einer elastischen Scheibe, J. Angew. Math., 40, 51-88 (1850) · ERAM 040.1086cj
[73] Love, A. E.H., The mathematical theory of elasticity (1927), Cambridge: Cambridge University Press, Cambridge · JFM 53.0752.01
[74] Reissner, E.; Stavsky, Y., Bending and stretching of certain type of heterogeneous elastic plates, Journal of Applied Mechanics, 9, 402-408 (1961) · Zbl 0100.20904
[75] Carrera, E., The effects of shear deformation and curvature on buckling and vibrations of cross-ply laminated composites shells, Journal of Sound and Vibration, 150, 405-433 (1991) · doi:10.1016/0022-460X(91)90895-Q
[76] Reissner, E., The effect of transverse shear deformation on the bending of elastic plates, Journal of Applied Mechanics, 12, 69-76 (1945) · Zbl 0063.06470
[77] Mindlin, Influence of rotatory inertia and shear in flexural motions of isotropic elastic plates, Journal of Applied Mechanics, 18, 1031-1036 (1951) · Zbl 0044.40101
[78] Yang, P. C.; Norris, C. H.; Stavsky, Y., Elastic Wave propagation in hetereogenous plates, International Journal of Solids and Structures, 2, 665-684 (1966) · doi:10.1016/0020-7683(66)90045-X
[79] Vlasov, B. F., On the equations of Bending of plates, Dokla Ak. Nauk. Azerbeijanskoi-SSR, 3, 955-979 (1957)
[80] Reddy, J. N., A simple higher order theories for laminated composites plates, Journal of Applied Mechanics, 52, 745-742 (1984) · Zbl 0549.73062
[81] Reddy, J. N.; Phan, N. D., “Stability and Vibration of Isotropic, Orthotropic and Laminated Plates”, According to a Higher order Shear Deformation Theory, Journal of Sound and Vibration, 98, 157-170 (1985) · Zbl 0558.73031 · doi:10.1016/0022-460X(85)90383-9
[82] Hildebrand, F.B., Reissner, E. and Thomas, G.B. (1938), “Notes on the foundations of the theory of small displacements of orthotropic shells”, NACA TN-1833, Washington, D.C.
[83] Sun, C. T.; Whitney, J. M., On the theories for the dynamic response of laminated plates, American Institute of Aeronautics and Astronautics Journal, 11, 372-398 (1973)
[84] Lo, K. H.; Christensen, R. M.; Wu, E. M., A Higher-Order Theory of Plate Deformation. Part 2: Laminated Plates, Journal of Applied Mechanics, 44, 669-676 (1977) · Zbl 0369.73053
[85] Soldatos, K. P., Cylindrical bending of Cross-ply Laminated Plates: Refined 2D Plate theories in comparison with the Exact 3D elasticity solution (1987), Greece: Dept. of Math., University of Ioannina, Greece
[86] Librescu, L.; Schmidt, R., Refined theories of elastic anisotropic shells accounting for small strains and moderate rotations, International Journal of Non-linear Mechanics, 23, 217-229 (1988) · Zbl 0637.73041 · doi:10.1016/0020-7462(88)90013-3
[87] Touratier, M., A refined theory for thick composites plates, Mechanics Research Communications, 15, 229-236 (1988) · Zbl 0651.73029 · doi:10.1016/0093-6413(88)90016-X
[88] Touratier, M., Un modele simple et efficace em mechanique dees structures composites, C.R. Adad. Sci. Paris, 309, 933-938 (1989) · Zbl 0677.73048
[89] Librescu, L.; Khdeir, A. A.; Frederick, D., A Shear Deformable Theory of Laminated Composite Shallow Shell-Type Panels and Their Response Analysis. Part I: Vibration and Buckling, Acta Mechanica, 77, 1-12 (1989) · Zbl 0724.73141 · doi:10.1007/BF01175794
[90] Dennis, S. T.; Palazotto, A. N., Laminated Shell in Cylindrical Bending, Two-Dimensional Approach vs Exact, American Institute of Aeronautics and Astronautics Journal, 29, 647-650 (1991)
[91] Touratier, M., An efficient standard plate theory, IJES, 29, 901-916 (1991) · Zbl 0825.73299 · doi:10.1016/0020-7225(91)90165-Y
[92] Gaudenzi, P., A general formulation of higher order theories for the analysis of laminated plates, Composite Structures, 20, 103-112 (1992) · doi:10.1016/0263-8223(92)90066-L
[93] Touratier, M., A refined theory of laminated shallow shells, International Journal of Solids and Structures, 29, 1401-1415 (1992) · Zbl 0759.73041 · doi:10.1016/0020-7683(92)90086-9
[94] Touratier, M., A generalization of shear deformation theories for axisymmetric multilayered shells, International Journal of Solids and Structures, 29, 1379-1399 (1992) · Zbl 0759.73040 · doi:10.1016/0020-7683(92)90085-8
[95] Savoia, M.; Laudero, F.; Tralli, A., A refined theory for laminated beams. Part I—A new higher order approach, Meccanica, 28, 39-51 (1993) · Zbl 0810.73037 · doi:10.1007/BF00990288
[96] Librescu, L.; Lin, W., Two models of shear deformable laminated plates and shells and their use in prediction of global response behavior, European Journal of Mechanics, Part A: Solids, 15, 1095-1120 (1996) · Zbl 0883.73038
[97] Zenkour, A.M. (1999), “Transverse shear and normal deformation theory for bending analysis of laminated and sandwich elastic beams”,Mechanics of Composite Materials and Structures, 267-283.
[98] Zenkour, A.M. and Fares, M.E. (1999), “Non-homogeneous response of cross-ply laminated elastic plates using high-order theory”,Composite Structures, 297-305.
[99] Sokolinsky, V.; Frosting, Y., Nonlinear behavior of Sandwich panels with transversely Flexible core, American Institute of Aeronautics and Astronautics Journal, 37, 1474-1482 (1999)
[100] Rabinovitch, O.; Frosting, Y., Higher-Order Analysis of Unidirectional Sandwich panels with Flat and generally curved faces and a ‘soft’ core, Sandwich Structures and Materials, 3, 89-116 (2001) · doi:10.1106/4WAB-NDGK-LXB2-5AVH
[101] Hsu, T.; Wang, J. T., A theory of laminated cylindrical shells consisting of layers of orthotropic laminae, American Institute of Aeronautics and Astronautics Journal, 8, 2141-2146 (1970) · Zbl 0222.73096
[102] Hsu, T.; Wang, J. T., Rotationally Symmetric Vibrations of Orthotropic Layered Cylindrical Shells, Journal of Sound and Vibration, 16, 473-487 (1971) · Zbl 0265.73070 · doi:10.1016/0022-460X(71)90657-2
[103] Cheung, Y. K.; Wu, C. I., Free Vibrations of Thick, Layered Cylinders Having Finite Longth with Various Boundary Conditions, Journal of Sound and Vibration, 24, 189-200 (1972) · Zbl 0241.73092 · doi:10.1016/0022-460X(72)90948-0
[104] Srinivas, S., A refined analysis of composite laminates, Journal of Sound and Vibration, 30, 495-507 (1973) · Zbl 0267.73050 · doi:10.1016/S0022-460X(73)80170-1
[105] Cho, K. N.; Bert, C. W.; Striz, A. G., Free Vibrations of Laminated Rectangular Plates Analyzed by Higher order Individual-Layer Theory, Journal of Sound and Vibration, 145, 429-442 (1991) · doi:10.1016/0022-460X(91)90112-W
[106] Robbins, D. H.; Reddy, J. N., Modeling of thick composites using a layer-wise theory, International Journal for Numerical Methods in Engineering, 36, 655-677 (1993) · Zbl 0770.73089 · doi:10.1002/nme.1620360407
[107] Carrera, E., A Priori vs a Posteriori Evaluation of Transverse Stresses in Multilayered Orthotropic Plates, Composite Structures, 48, 245-260 (2000) · doi:10.1016/S0263-8223(99)00112-9
[108] Lekhnitskii, S.G. (1935), “Strength Calculation of Composite Beams”,Vestnik Inzhen. i Tekhnikov, No.9.
[109] Ambartsumian, S.A. (1958), “On a theory of bending of anisotropic plates”,Investiia Akad. Nauk SSSR, Ot. Tekh. Nauk., No 4.
[110] Ambartsumian, S. A., On a general theory of anisotropic shells, PMM, 22, No. 2, 226-237 (1958) · Zbl 0086.38505
[111] Ambartsumian, S.A. (1961),Theory of anisotropic shells, Fizmatzig, Moskwa; Translated from Russian, NASA TTF-118, 1964.
[112] Ambartsumian, S. A., Contributions to the theory of anisotropic layered shells, Applied Mechanics Review, 15, 245-249 (1962)
[113] Ambartsumian, S.A. (1969),Theory of anisotropic plates, Translated from Russian by T. Cheron and Edited by J.E. Ashton Tech. Pub. Co.
[114] Ren, J. G., A new theory of laminated plates, Composite Science and Technology, 26, 225-239 (1986) · doi:10.1016/0266-3538(86)90087-4
[115] Ren, J. G., Bending theory of laminated plates, Composite Science and Technology, 27, 225-248 (1986) · doi:10.1016/0266-3538(86)90033-3
[116] Whitney, J. M., The effects of transverse shear deformation on the bending of laminated plates, Journal of Composite Materials, 3, 534-547 (1969) · doi:10.1177/002199836900300316
[117] Rath, B. K.; Das, Y. C., Vibration of Layered Shells, Journal of Sound and Vibration, 28, 737-757 (1973) · Zbl 0257.73057 · doi:10.1016/S0022-460X(73)80146-4
[118] Sun, C. T.; Whitney, J. M., On the theories for the dynamic response of laminated plates, American Institute of Aeronautics and Astronautics Journal, 11, 372-398 (1973)
[119] Yu, Y. Y., A new theory of elastic sandwich plates. One dimensional case, Journal of Applied Mechanics, 37, 1031-1036 (1959)
[120] Chou; Carleone, Transverse Shear in Laminated Plates Theories, American Institute of Aeronautics and Astronautics Journal, 11, 1333-1336 (1973)
[121] Dischiuva, M., A refinement of the transverse shear deformation theory for multilayered plates, Aerotecnica Missili e Spazio, 63, 84-92 (1984) · Zbl 0546.73047
[122] Dischiuva, M., Cicorello, A. and Dalle Mura, E. (1985), “A class of multilayered anisotropic plate elements including the effects of transverse shear deformabilty”,AIDAA Conference, Torino, 877-892.
[123] Dischiuva, M., An improved shear deformation theory for moderately thick multilayered anisotropic shells and plates, Journal of Applied Mechanics, 54, 589-596 (1987) · Zbl 0619.73054 · doi:10.1115/1.3173074
[124] Dischiuva, M.; Carrera, E., Elasto-dynamic Behavior of relatively thick, symmetrically laminated, anisotropic circular cylindrical shells, Journal of Applied Mechanics, 59, 222-223 (1992)
[125] Cho, M.; Parmerter, R. R., Efficient higher order composite plate theory for general lamination configurations, American Institute of Aeronautics and Astronautics Journal, 31, 1299-1305 (1993) · Zbl 0781.73036
[126] Bhashar, B.; Varadan, T. K., Refinement of Higher-Order laminated plate theories, American Institute of Aeronautics and Astronautics Journal, 27, 1830-1831 (1989)
[127] Savithri, S.; Varadan, T. K., Refinement of Higher-Order laminated plate theories, American Institute of Aeronautics and Astronautics Journal, 28, 1842-1843 (1990)
[128] Lee, K. H.; Senthilnathan, N. R.; Lim, S. P.; Chow, S. T., An improved zig-zag model for the bending analysis of laminated composite plates, Composite Structures, 15, 137-148 (1990) · doi:10.1016/0263-8223(90)90003-W
[129] Li, X.; Liu, D., Zig-zag theories for composites laminates, American Institute of Aeronautics and Astronautics Journal, 33, 1163-1165 (1994) · Zbl 0863.73037
[130] Bekou, A.; Touratier, M., A Rectangular Finite Element for analysis composite multilayered shallow shells in static, vibration and buckling, International Journal for Numerical Methods in Engineering, 36, 627-653 (1993) · Zbl 0769.73074 · doi:10.1002/nme.1620360406
[131] Touratier, M., A generalization of shear deformation theories for axisymmetric multilayered shells, International Journal of Solids and Structures, 29, 1379-1399 (1992) · Zbl 0759.73040 · doi:10.1016/0020-7683(92)90085-8
[132] Touratier, M., A refined theories for laminated shallow shells, International Journal of Solids and Structures, 29, 1401-1415 (1992) · Zbl 0759.73041 · doi:10.1016/0020-7683(92)90086-9
[133] Soldatos, K. P.; Timarci, T., A unified formulation of laminated composites, shear deformable, five-degrees-of-freedom cylindrical shell theories, Composite Structures, 25, 165-171 (1993) · doi:10.1016/0263-8223(93)90162-J
[134] Timarci, T.; Soldatos, K. P., Comparative dynamic studies for symmetric cross-ply circular cylindrical shells on the basis a unified shear deformable shell theories, Journal of Sound and Vibration, 187, 609-624 (1995) · Zbl 1232.74074 · doi:10.1006/jsvi.1995.0548
[135] Idlbi, A.; Karama, M.; Touratier, M., Comparison of various laminated plate theories, Composite Structures, 37, 173-184 (1997) · doi:10.1016/S0263-8223(97)80010-4
[136] Ossodzow, C.; Muller, P.; Touratier, M., Wave dispersion in deep multilayered doubly curved viscoelastic shells, Journal of Sound and Vibration, 214, 531-552 (1998) · doi:10.1006/jsvi.1998.1573
[137] Ossodzow, C.; Touratier, M.; Muller, P., Deep doubly curved multilayered shell theory, American Institute of Aeronautics and Astronautics Journal, 37, 100-109 (1999)
[138] Murakami, H., A laminated beam theory with interlayer slip, Journal of Applied Mechanics, 51, 551-559 (1984) · Zbl 0552.73040
[139] Murakami, H. (1985), “Laminated composite plate theory with improved in-plane responses”,ASME Proceedings of PVP Conference, New Orleans, June 24-26, PVP-98-2, 257-263.
[140] Murakami, H., Laminated composite plate theory with improved in-plane responses, Journal of Applied Mechanics, 53, 661-666 (1986) · Zbl 0597.73069
[141] Toledano, A.; Murakami, H., A composite plate theory for arbitrary laminate configurations, Journal of Applied Mechanics, 54, 181-189 (1987) · Zbl 0604.73074
[142] Toledano, A.; Murakami, H., A high-order laminated plate theory with improved in-plane responses, International Journal of Solids and Structures, 23, 111-131 (1987) · Zbl 0601.73064 · doi:10.1016/0020-7683(87)90034-5
[143] Murakami, H.; Yamakawa, J., Dynamic response of plane anisotropic beams with shear deformation, ASCE Journal of Engineering Mechanics, 123, 1268-1275 (1996) · doi:10.1061/(ASCE)0733-9399(1997)123:12(1268)
[144] Murakami, H.; Reissner, E.; Yamakawa, J., Anisotropic beam theories with shear deformation, Journal of Applied Mechanics, 63, 660-668 (1996) · Zbl 0878.73029
[145] Carrera, E., Mixed Layer-Wise Models for Multilayered Plates Analysis, Composite Structures, 43, 57-70 (1998) · doi:10.1016/S0263-8223(98)00097-X
[146] Carrera, E., Evaluation of Layer-Wise Mixed Theories for Laminated Plates Analysis, American Institute of Aeronautics and Astronautics Journal, 26, 830-839 (1998)
[147] Carrera, E., Layer-Wise Mixed Models for Accurate Vibration Analysis of Multilayered Plates, Journal of Applied Mechanics, 65, 820-828 (1998)
[148] Carrera, E., Multilayered Shell Theories that Account for a Layer-Wise Mixed Description. Part I. Governing Equations, American Institute of Aeronautics and Astronautics Journal, 37, No. 9, 1107-1116 (1990)
[149] Carrera, E., Multilayered Shell Theories that Account for a Layer-Wise Mixed Description. Part II. Numerical Evaluations, American Institute of Aeronautics and Astronautics Journal, 37, No. 9, 1117-1124 (1999)
[150] Carrera, E., A Reissner’s Mixed Variational Theorem Applied to Vibration Analysis of Multilayered Shells, Journal of Applied Mechanics, 66, No. 1, 69-78 (1999)
[151] Carrera, E., A Study of Transverse Normal Stress Effects on Vibration of Multilayered Plates and Shells, Journal of Sound and Vibration, 225, 803-829 (1999) · doi:10.1006/jsvi.1999.2271
[152] Carrera, E., Transverse Normal Stress Effects in Multilayered Plates, Journal of Applied Mechanics, 66, 1004-1012 (1999)
[153] Carrera, E., Single-Layer vs Multi-Layers Plate Modelings on the Basis of Reissner’s Mixed Theorem, American Institute of Aeronautics and Astronautics Journal, 38, 342-343 (2000)
[154] Messina, A., Two generalized higher order theories in free vibration studies of multilayered plates, Journal of Sound and Vibration, 242, 125-150 (2000) · doi:10.1006/jsvi.2000.3364
[155] Bhaskar, K.; Varadan, T. K., Reissner’s New Mixed Variational Principle Applied to Laminated Cylindrical Shells, Journal of Pressure Vessel Technology, 114, 115-119 (1992) · doi:10.1115/1.2929001
[156] Jing, H.; Tzeng, K. G., Refined Shear Deformation Theory of Laminated Shells, American Institute of Aeronautics and Astronautics Journal, 31, 765-773 (1993) · Zbl 0806.73040
[157] Ali, J. S.M.; Bhaskar, K.; Varadan, T. K., A new theory for accurate thermal/mechanical flexural analysis of symmetric laminated plates, Composite Structures, 45, 227-232 (1999) · doi:10.1016/S0263-8223(99)00028-8
[158] Reissner, E., On variational theorem in elasticity, Journal of Mathematics & Physics, 20, 90-90 (1950) · Zbl 0039.40502
[159] Zenkour, A. M., Vibration of axisymmetric shear deformable cross-ply laminated cylindrical shells-a variational approach, Composite Structures, 36, 219-231 (1998)
[160] Fares, M. E.; Zenkour, A. M., Mixed variational formula for the thermal bending of laminated plates, Journal of Thermal Stress, 22, 347-365 (1998) · doi:10.1080/014957399280913
[161] Zenkour, A. M.; Fares, M. E., Bending, buckling and free vibration of nonhomogeneous composite laminated cylindrical shell using a refined first order theory, Composites Part B, 32, 237-247 (2001) · doi:10.1016/S1359-8368(00)00060-3
[162] Auricchio, F.; Sacco, E., Partial-mixed formulation and refined models for the analysis of composites laminated within FSDT, Composite Structures, 46, 103-113 (2001) · doi:10.1016/S0263-8223(99)00035-5
[163] Fettahlioglu, O. A.; Steele, C. R., Asymptotic Solutions for Orthotropic Non-homogeneous Shells of Reution, Journal of Applied Mechanics, 41, 753-758 (1974) · Zbl 0295.73069
[164] Berdichevsky, V. L., Variational-Asymptotic Method of Shell Theory Construction, PMM, 43, 664-667 (1979)
[165] Widera, G. E.O.; Logan, D. L., A Refined Theories for Non-homogeneous Anisotropic, Cylindrical Shells: Part I-Derivation, Journal of Engineering Mechanics Division, ASCE, 106, 1053-1073 (1980)
[166] Widera, G. E.O.; Fan, H., On the derivation of a Refined Theory for Non-homogeneous Anisotropic Shells of Reution, Journal of Applied Mechanics, 110, 102-105 (1988)
[167] Berdichevsky, V. L.; Misyura, V., Effect of Accuracy Loss in Classical Shell Theory, Journal of Applied Mechanics, 59, S217-S223 (1992) · Zbl 0770.73047
[168] Hodges, D. H.; Lee, B. W.; Atilgan, A. R., Application of the variational-asymptotic method to laminated composite plates, American Institute of Aeronautics and Astronautics Journal, 31, 1674-1983 (1993) · Zbl 0800.73537
[169] Tarn, J.; Wang, S., An asymptotic theory for dynamic response of inhomogeneous laminated plates, International Journal of Solids and Structures, 31, 231-246 (1994) · Zbl 0849.73026 · doi:10.1016/0020-7683(94)90052-3
[170] Wang, S.; Tarn, J., A three-dimensional analysis of anisotropic inhomogeneous laminated plates, International Journal of Solids and Structures, 31, 497-415 (1994) · Zbl 0828.73040 · doi:10.1016/0020-7683(94)90089-2
[171] Satyrin, V. G.; Hodges, D. H., On asymptotically correct linear laminated plate theory, International Journal of Solids and Structures, 33, 3649-3671 (1996) · Zbl 0920.73097 · doi:10.1016/0020-7683(95)00208-1
[172] Satyrin, V. G., Derivation of Plate Theory Accounting Asymptotically Correct Shear Deformation, Journal of Applied Mechanics, 64, 905-915 (1997) · Zbl 0920.73100
[173] Wu, W.; Tarn, J.; Tang, S., A refined asymptotic theory for dynamic analysis of doubly curved laminated shells, Journal of Sound and Vibration, 35, 1953-79 (1997) · Zbl 0934.74034
[174] Antona, E.; Frulla, G., Cicala’s asymptotic approach to the linear shell theory, Composite Structures, 52, 13-26 (2001) · doi:10.1016/S0263-8223(00)00198-7
[175] Erikssen, J. L.; Truesdell, C., Exact theory for stress and strain in rods and shells, Archive of Rational Mechanics and Analysis, 1, 295-323 (1958) · Zbl 0081.39303 · doi:10.1007/BF00298012
[176] Green, A. E.; Naghdi, P. M., A theory of laminated composite plates, Journal of Applied Mathematics, 29, 1-23 (1982) · Zbl 0496.73067
[177] Sun, C.T., Achenbach, J.D. and Herrmann (1968), “Continuum theory for a laminated medium”,Journal of Applied Mechanics, 467-475. · Zbl 0177.54303
[178] Grot, R. A., A Continuum model for curvilinear laminated composites, International Journal of Solids and Structures, 8, 439-462 (1972) · Zbl 0272.73001 · doi:10.1016/0020-7683(72)90016-9
[179] Epstein, M.; Glockner, P. G., Nonlinear analysis of multilayred shells, International Journal of Solids and Structures, 13, 1081-1089 (1977) · Zbl 0364.73079 · doi:10.1016/0020-7683(77)90078-6
[180] Esptein, M.; Glockner, P. G., Multilayerd shells and directed surfaces, International Journal of Engineering Sciences, 17, 553-562 (1979) · Zbl 0397.73078 · doi:10.1016/0020-7225(79)90125-3
[181] Noor, A. K.; Rarig, P. L., Three-Dimensional solutions of laminated cylinders, Computer Methods in Applied Mechanics and Engineering, 3, 319-334 (1974) · Zbl 0278.73061 · doi:10.1016/0045-7825(74)90017-6
[182] Malik, M., Differential quadrature method in computational mechanics: new development and applications (1994), Oklahoma: University of Oklahoma, Oklahoma
[183] Malik, M.; Bert, C. W., Differential quadrature analysis of free vibration of symmetric cross-ply laminates with shear deformation and rotatory inertia, Shock Vibr., 2, 321-338 (1995)
[184] Liew, K. M.; Han, B.; Xiao, M., Differential quadrature method for thick symmetric cross-ply laminates with first-order shear flexibility, International Journal of Solids and Structures, 33, 2647-2658 (1996) · Zbl 0900.73963 · doi:10.1016/0020-7683(95)00174-3
[185] Davi, G., Stress field in general composite laminates, American Institute of Aeronautics and Astronautics Journal, 34, 2604-2608 (1996) · Zbl 0900.73437
[186] Davi, G.; Milazzo, A., Bending Stress fields in composite laminate beams by a boundary integral formulation, Composite Structures, 71, 267-276 (1999) · doi:10.1016/S0045-7949(98)00228-4
[187] Milazzo, A., Interlaminar Stress in Laminated Composite Beam-Type Structures Under Shear/Bending, American Institute of Aeronautics and Astronautics Journal, 38, 687-694 (2000)
[188] Noor, A. K.; Burton, W. S., Stress and Free Vibration Analyses of Multilayered Composite Plates, Composite Structures, 11, 183-204 (1989) · doi:10.1016/0263-8223(89)90058-5
[189] Noor, A. K.; Peters, J. M., A posteriori estimates of shear correction factors in multilayered composite cylinders, Journal of Engineering Mechanics, ASCE, 115, 1225-1244 (1989)
[190] Noor, A. K.; Burton, W. S.; Peters, J. M., Predictor corrector procedures for stress and free vibration analysis of multilayered composite plates and shells, Computer Methods in Applied Mechanics and Engineering, 82, 341-363 (1990) · Zbl 0729.73268 · doi:10.1016/0045-7825(90)90171-H
[191] Vel, S. S.; Batra, R. C., Analysis solution for rectangular thick plates subjected to arbitrary boundary conditions, American Institute of Aeronautics and Astronautics Journal, 37, 1464-1473 (1999)
[192] Vel, S. S.; Batra, R. C., A generalized plane strain deformation of thick anisotropic composite laminates plates, International Journal of Solids and Structures, 37, 715-733 (2000) · Zbl 0955.74043 · doi:10.1016/S0020-7683(99)00040-2
[193] Zienkiwicz, O. C., The finite element method (1986), London: Mc Graw-Hill, London
[194] Abel, J.F. and Popov, E.P. (1968), “Static and dynamic finite element analysis of sandwich structures”, Proceedings of theSecond Conference of Matrix Methods in Structural Mechanics, AFFSL-TR-68-150, 213-245.
[195] Monforton, G.R. and Schmidt, L.A. (1968), “Finite element analyses of sandwich plates and cylindrical shells with laminated faces”, Proceedings of theSecond Conference of Matrix Methods in Structural Mechanics, AFFSL-TR-68-150, 573-308.
[196] Sharif, P. and Popov, E.P. (1973), “Nonlinear finite element analysis of sandwich shells of reutions”,American Institute of Aeronautics and Astronautics Journal, 715-722. · Zbl 0264.73107
[197] Pryor, C. W.; Barker, R. M., A finite element analysis including transverse shear effect for applications to laminated plates, American Institute of Aeronautics and Astronautics Journal, 9, 912-917 (1971)
[198] Noor, A. K., Finite Element Analysis of Anisotropic Plates, American Institute of Aeronautics and Astronautics Journal, 11, 289-307 (1972) · Zbl 0346.73045
[199] Mantegazza, P.; Borri, M., Elementi finiti per l’analisi di di pannelli anisotropi, Aerotecnica Missili e Spazio, 53, 181-191 (1974)
[200] Noor, A. K.; Mathers, M. D., Finite Element Analysis of Anisotropic Plates, International Journal for Numerical Methods in Engineering, 11, 289-370 (1977) · Zbl 0346.73045 · doi:10.1002/nme.1620110206
[201] Panda, S. C.; Natarayan, Finite Element Analysis of Laminated Composites Plates, International Journal for Numerical Methods in Engineering, 14, 69-79 (1979) · Zbl 0394.73073 · doi:10.1002/nme.1620140106
[202] Reddy, J. N., Free vibration of antisymmetric angle ply laminated plates including transverse shear deformation by finite element methods, Journal of Sound and Vibration, 66, 565-576 (1979) · Zbl 0425.73052 · doi:10.1016/0022-460X(79)90700-4
[203] Reddy, J. N., A penalty plate-bending element for the analysis of laminated anisotropic composites plates, International Journal for Numerical Methods in Engineering, 12, 1187-1206 (1980) · Zbl 0447.73059 · doi:10.1002/nme.1620150807
[204] Reddy, J.N. and Chao, W.C. (1981), “A comparison of closed-form and finite-element solutions of thick laminated anisotropic rectangular plates”,Nuclear Engrg. Design, 153-167.
[205] Ganapathy, M.; Touratier, M., A study on thermal postbuckling behaviors if laminated composite plates using a shear flexible finite element, Finite Element Analysis and Design, 28, 115-135 (1997) · Zbl 0914.73058 · doi:10.1016/S0168-874X(97)81955-5
[206] Pugh, E. D.L.; Hinton, E.; Zienkiewicz, O. C., A study of quadrilater plate bending elements with reduced integration, International Journal for Numerical Methods in Engineering, 12, 1059-1079 (1978) · Zbl 0377.73065 · doi:10.1002/nme.1620120702
[207] Hughes, T. J.R.; Cohen, M.; Horaun, M., Reduced and selective integration techniques in the finite element methods, Nuclear Engineering and Design, 46, 203-222 (1978) · doi:10.1016/0029-5493(78)90184-X
[208] Malkus, D. S.; Hughes, T. J.R., Mixed finite element methods—reduced and selective integration techniques: a unified concepts, Computer Methods in Applied Mechanics and Engineering, 15, 63-81 (1978) · Zbl 0381.73075 · doi:10.1016/0045-7825(78)90005-1
[209] Bathe, K. J.; Dvorkin, E. N., A four node plate bending element based on Mindlin/Reissner plate theory and mixed interpolation, International Journal for Numerical Methods in Engineering, 21, 367-383 (1985) · Zbl 0551.73072 · doi:10.1002/nme.1620210213
[210] Briossilis, D., TheC^0 structural finite elements reformulated, International Journal for Numerical Methods in Engineering, 35, 541-561 (1992) · Zbl 0768.73069 · doi:10.1002/nme.1620350308
[211] Briossilis, D., The four nodeC^0 Mindlin plate bending elements reformulated. Part I: formulation, Computer Methods in Applied Mechanics and Engineering, 107, 23-43 (1993) · Zbl 0783.73066 · doi:10.1016/0045-7825(93)90167-V
[212] Briossilis, D., The four nodeC^0 Mindlin plate bending elements reformulated. Part II: verification, Computer Methods in Applied Mechanics and Engineering, 107, 45-100 (1993) · Zbl 0783.73066 · doi:10.1016/0045-7825(93)90168-W
[213] Brank, B.; Perić, D.; Damjanić, F. B., On the implementation of a nonlinear four node shell element for thin multilayered elastic shells, Computational Mechanics, 16, 341-359 (1995) · Zbl 0848.73060 · doi:10.1007/BF00350723
[214] Auricchio, F.; Taylor, R. L., A shear deformable plate elements with an exact thin limits, Computer Methods in Applied Mechanics and Engineering, 118, 493-415 (1994) · Zbl 0849.73063 · doi:10.1016/0045-7825(94)90009-4
[215] Auricchio, F.; Sacco, L., A mixed-enhanced finite elements for the analysis of laminated composites, International Journal for Numerical Methods in Engineering, 44, 1481-1504 (1999) · Zbl 0957.74044 · doi:10.1002/(SICI)1097-0207(19990410)44:10<1481::AID-NME554>3.0.CO;2-Q
[216] Brank, B.; Carrera, E., A Family of Shear-Deformable Shell Finite Elements for Composite Structures, Computer & Structures, 76, 297-297 (2000) · doi:10.1016/S0045-7949(99)00153-4
[217] Auricchio, F., Lovadina and Sacco, E. (2000), “Finite element for laminated plates”,AIMETA GIMC Conference 195-209, Brescia, Nov. 13-15.
[218] Seide, P.; Chaudhury, R. A., Triangular finite elements for thick laminated shells, International Journal for Numerical Methods in Engineering, 27, 1747-1755 (1987)
[219] Kant, T.; Owen, D. R.J.; Zienkiewicz, O. C., Refined higher orderC^0 plate bending element, Computer & Structures, 15, 177-183 (1982) · Zbl 0475.73069 · doi:10.1016/0045-7949(82)90065-7
[220] Pandya, B. N.; Kant, T., Higher-order shear deformable for flexural of sandwich plates. Finite element evaluations, International Journal of Solids and Structures, 24, 1267-1286 (1988) · Zbl 0676.73044 · doi:10.1016/0020-7683(88)90090-X
[221] Kant, T.; Kommineni, J. R., Large Amplitude Free Vibration Analysis of Cross-Ply Composite and Sandwich Laminates with a Refined Theory andC^0 Finite Elements, Computer & Structures, 50, 123-134 (1989) · Zbl 0800.73428 · doi:10.1016/0045-7949(94)90443-X
[222] Babu, C. S.; Kant, T., Two shear deformable finite element models for buckling analysis of skew fiber-reinforced composites and sandwich panels, Composite Structures, 46, 115-124 (1999) · doi:10.1016/S0263-8223(99)00039-2
[223] Phan, N. D.; Reddy, J. N., Analysis Analysis of laminated composites plates using a higher order shear deformation theory, International Journal for Numerical Methods in Engineering, 12, 2201-2219 (1985) · Zbl 0577.73063 · doi:10.1002/nme.1620211207
[224] Tessler, A., A Higher-order plate theory with ideal finite element suitability, Computer Methods in Applied Mechanics and Engineering, 85, 183-205 (1991) · Zbl 0825.73685 · doi:10.1016/0045-7825(91)90132-P
[225] Tessler, A.; Hughes, T. J.R., A three-node Mindlin plate elements with improved transverse shear, Computer Methods in Applied Mechanics and Engineering, 50, 71-101 (1985) · Zbl 0562.73069 · doi:10.1016/0045-7825(85)90114-8
[226] Tessler, A., A priori identification of shear locking and stiffening in in triangular Mindlin element, Computer Methods in Applied Mechanics and Engineering, 53, 183-200 (1985) · Zbl 0553.73064 · doi:10.1016/0045-7825(85)90005-2
[227] Barboni, R.; Gaudenzi, P., A class ofC^0 finite elements for the static and dynamic analysis of laminated plates, Computer & Structures, 44, 1169-1178 (1992) · doi:10.1016/0045-7949(92)90360-C
[228] Singh, G.; Venkateswara, R.; Ivengar, N. G.R., Nonlinear bending of their and thick plates unsymmetrically laminated composite beams using refined finite element models, Computer & Structures, 42, 471-479 (1992) · doi:10.1016/0045-7949(92)90114-F
[229] Bhaskar, K.; Varadan, T. K., A Higher-order Theory for bending analysis of laminated shells of reution, Computer & Structures, 40, 815-819 (1991) · Zbl 0850.73168 · doi:10.1016/0045-7949(91)90310-I
[230] Ganapathy, M.; Makhecha, D. P., Free vibration analysis of multi-layered composite laminates based on an accurate higher order theory, Composites Part B, 32, 535-543 (2001) · doi:10.1016/S1359-8368(01)00028-2
[231] Reddy, J. N.; Barbero, E. J.; Teply, J. L., A plate bending element based on a generalized laminate theory, International Journal for Numerical Methods in Engineering, 28, 2275-2292 (1989) · Zbl 0717.73066 · doi:10.1002/nme.1620281006
[232] Reddy, J. N., An evaluation of equivalent single layer and layer-wise theories of composite laminates, Composite Structures, 25, 21-35 (1993) · doi:10.1016/0263-8223(93)90147-I
[233] Gaudenzi, P.; Barboni, R.; Mannini, A., A finite element evaluation of single-layer and multi-layer theories for the analysis of laminated plates, Computer & Structures, 30, 427-440 (1995) · doi:10.1016/0263-8223(94)00065-4
[234] Botello, S.; Oñate, E.; Miquel, J., A layer-wise triangle for analysis of laminated composite plates and shells, Computer & Structures, 70, 635-646 (1999) · Zbl 0958.74059 · doi:10.1016/S0045-7949(98)00165-5
[235] Sacco, E.; Reddy, J. N., On the first- and second-order moderate rotation theory of laminated plates, International Journal for Numerical Methods in Engineering, 33, 1-17 (1992) · Zbl 0758.73025 · doi:10.1002/nme.1620330102
[236] Sacco, E., A consistent model for first-order moderate rotation plate-theory, International Journal for Numerical Methods in Engineering, 35, 2049-2066 (1992) · Zbl 0767.73038 · doi:10.1002/nme.1620351008
[237] Bruno, D.; Lato, S.; Sacco, L., Nonlinear behavior od sandwich plates, Proceedings of Engineering System Design and Analysis Conference, Istanbul, Turkey, 47/6, 115-120 (1992)
[238] Schmidt, R.; Reddy, J. N., A Refined small strain and moderate rotation theory of elastic anisotropic shells, Journal of Applied Mechanics, 55, 611-617 (1988) · Zbl 0705.73070
[239] Palmiero, A. F.; Reddy, J. N.; Schmidt, R., On a moderate rotation theory of laminated anisotropic shells-Part 1. Theory. And Part-2, International Journal for Non-linear Mechanics, 25, 687-700 (1990) · Zbl 0731.73024 · doi:10.1016/0020-7462(90)90007-V
[240] Palmiero, A. F.; Reddy, J. N.; Schmidt, R., On a moderate rotation theory of laminated anisotropic shells. Part-2. Finite element analysis, International Journal for Non-linear Mechanics, 25, 701-714 (1990) · Zbl 0731.73025 · doi:10.1016/0020-7462(90)90008-W
[241] Kapania, R. K.; Mohan, P., Static, free vibration and thermal analysis of composite plates and shells using a flat triangular shell element, Computational Mechanics, 17, 343-357 (1996) · Zbl 0849.73068 · doi:10.1007/BF00368557
[242] Hammerand, D. C.; Kapania, R. K., Thermo-viscoelastic analysis of composite structures using a triangular flat shell element, American Institute of Aeronautics and Astronautics Journal, 37, 238-247 (1999)
[243] Hammerand, D. C.; Kapania, R. K., Geometrically nonlinear shell element for hydro thermo rheologically simple linear visco-elastic materials, American Institute of Aeronautics and Astronautics Journal, 38, 2305-2319 (2000)
[244] Krätzig, W. B., Allgemeine Schalentheorie beliebiger Werkstoffe und Verformungen, Ingeniere Archieve, 40, 311-326 (1971) · Zbl 0227.73146 · doi:10.1007/BF00533148
[245] Pietraszkiewicz, Lagrangian description and incremental formulation in the non-linear theory of thin shells, International Journal of Non-linear Mechanics, 19, 115-140 (1983) · Zbl 0537.73050 · doi:10.1016/0020-7462(84)90002-7
[246] Rothert, H.; Dehemel, W., Nonlinear analysis of isotropic, orthotropic and laminated plates and shells, Computer Methods in Applied Mechanics and Engineering, 64, 429-446 (1987) · Zbl 0625.73090 · doi:10.1016/0045-7825(87)90049-1
[247] Gruttman, F.; Wagner, W.; Meyer, L.; Wriggers, P., A nonlinear composite shell element with continuous interlaminar shear stresses, Computational Mechanics, 13, 175-188 (1993) · Zbl 0786.73072 · doi:10.1007/BF00370134
[248] Basar, Y.; Ding, Y.; Shultz, R., Refined shear deformation models for composite laminates with finite rotation, International Journal of Solids and Structures, 30, 2611-2638 (1993) · Zbl 0794.73036 · doi:10.1016/0020-7683(93)90102-D
[249] Basar, Y., Finite-rotation theories for composite laminates, Acta Mechanica, 98, 159-176 (1993) · Zbl 0771.73054 · doi:10.1007/BF01174300
[250] Braun, M.; Bischoff, M.; Ramm, E., Nonlinear shell formulation for complete three-dimensional constitutive laws including composites and laminates, Computational Mechanics, 15, 1-18 (1994) · Zbl 0819.73042 · doi:10.1007/BF00350285
[251] Putcha, N. S.; Reddy, J. N., A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates, Computer & Structures, 22, 529-538 (1986) · Zbl 0576.73067 · doi:10.1016/0045-7949(86)90002-7
[252] Putcha, N. S.; Reddy, J. N., Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined theory, International Journal for Numerical Methods in Engineering, 12, 2201-2219 (1986)
[253] Auricchio, F.; Sacco, E., Partial Mixed formulation and refined models for the analysis of composite laminates within and FSDT, Composite Structures, 46, 103-113 (1999) · doi:10.1016/S0263-8223(99)00035-5
[254] Auricchio, F.; Sacco, E., MITC finite elements for laminated composites plates, International Journal for Numerical Methods in Engineering, 50, 707-738 (1999) · Zbl 1011.74065
[255] Ren, J. G.; Owen, D. R.J., Vibration and buckling of laminated plates, International Journal of Solids and Structures, 25, 95-106 (1989) · Zbl 0672.73049 · doi:10.1016/0020-7683(89)90001-2
[256] Dischiuva, M., Cicorello, A. and Dalle Mura, E. (1985), “A class of multilayered anisotropic plate elements including the effects of transverse shear deformabily”, Proceedings ofAIDAA Conference, Torino, 877-892.
[257] Dischiuva, M., A general quadrilater, multilayered plate element with continuous interlaminar stresses, Composite Structures, 47, 91-105 (1993) · Zbl 0777.73062 · doi:10.1016/0045-7949(93)90282-I
[258] Dischiuva, M., A third order triangular multilayered plate elements with continuous interlaminar stresses, International Journal for Numerical Methods in Engineering, 38, 1-26 (1995) · Zbl 0823.73064 · doi:10.1002/nme.1620380102
[259] Ganapathy, M.; Polit, O.; Touratier, M., AC^0 eight-node membrane-shear-bending element for geometrically non linear (static and dynamics) analysis of laminated, International Journal for Numerical Methods in Engineering, 39, 3453-3474 (1996) · Zbl 0884.73066 · doi:10.1002/(SICI)1097-0207(19961030)39:20<3453::AID-NME9>3.0.CO;2-7
[260] Ganapathy, M.; Polit, O.; Touratier, M., A study on thermal postbuckling behavior of laminated composite plates using a shear flexible finite element, Computer Methods in Applied Mechanics and Engineering, 28, 115-135 (1997) · Zbl 0914.73058
[261] Ganapathy, M.; Patel, B. P.; Saravan, J.; Touratier, M., Application of spline element for large amplitude free vibrations of laminated orthotropic straight/curved beams, Composites Part B, 29, 1-8 (1998) · doi:10.1016/S1359-8368(97)00025-5
[262] Ganapathy, M.; Patel, B. P., Influence of amplitude of vibrations on loss factors of laminated composite beams and plates, Journal of Sound and Vibration, 219, 730-738 (1999) · doi:10.1006/jsvi.1998.1943
[263] Ganapathy, M.; Patel, B. P.; Sambandan; Touratier, M., Dynamic instability analysis of circular conical shells, Composite Structures, 46, 59-64 (1999) · doi:10.1016/S0263-8223(99)00045-8
[264] Patel, B. P.; Ganapathy, M.; Touratier, M., Nonlinear free flexural vibration/postbuckling analysis of laminated orthotropic beams/columns on a two parameter elastic foundation, Composite Structures, 49, 186-196 (1999)
[265] Ganapathy, M., Patel, B.P., Saravan, J. and Touratier, M. (1999), “Shear Flexible curved spline beam element for static analysis”,Finite Element Analysis and Design, 181-202. · Zbl 0954.74060
[266] Ganapathy, M.; Patel, B. P.; Polit, O.; Touratier, M., AC^1 finite element including transverse shear and torsion warping for rectangular sandwich beams, International Journal for Numerical Methods in Engineering, 45, 47-75 (1999) · Zbl 0958.74064 · doi:10.1002/(SICI)1097-0207(19990510)45:1<47::AID-NME578>3.0.CO;2-B
[267] Polit, O.; Touratier, M., Higher order triangular sandwich plate finite elements for linear and nonlinear analyses, Computer Methods in Applied Mechanics and Engineering, 185, 305-324 (2000) · Zbl 1064.74670 · doi:10.1016/S0045-7825(99)00264-9
[268] Cho, M.; Parmerter, R., Finite element for composite plate bending based on efficient higher order theories, American Institute of Aeronautics and Astronautics Journal, 32, 2241-2248 (1994) · Zbl 0826.73055
[269] Lee, D.; Waas, A. M., Stability analysis of rotating multilayer annular plate with a stationary frictional follower load, International Journal of Mechanical Sciences, 39, 1117-38 (1996) · Zbl 0909.73039 · doi:10.1016/S0020-7403(97)00007-6
[270] Lee, D.; Waas, A. M.; Karnopp, B. H., Analysis of rotating multilayer annular plate modeled via a layer-wise zig-zag theory: free vibration and transient analysis, Composite Structures, 66, 313-335 (1997) · Zbl 0973.74560
[271] Iscsro, U. (1998), “Eight node zig-zag element for deflection and analysis of plate with general lay up”,Composites Part B, 425-441.
[272] Averill, R. C., Static and dynamic response of moderately thick laminated beams with damage, Composite Engineering, 4, 381-395 (1994)
[273] Averill, R. C., Thick beam theory and finite element model with zig-zag sublaminate approximations, American Institute of Aeronautics and Astronautics Journal, 34, 1627-1632 (1996) · Zbl 0903.73028
[274] Aitharaju, V. R.; Averill, R. C., C^0 zig-zag kinematic displacement models for the analysis of laminated composites, Mechanics of Composite Materials and Structures, 6, 31-56 (1999) · doi:10.1080/107594199305647
[275] Cho, Y. B.; Averill, R. C., First order zig-zag sublaminate plate theory and finite element model for laminated composite and sandwich panels, Computer & Structures, 50, 1-15 (2000) · doi:10.1016/S0263-8223(99)00063-X
[276] Jing, H.; Liao, M. L., Partial hybrid stress element for the analysis of thick laminate composite plates, International Journal for Numerical Methods in Engineering, 28, 2813-2827 (1989) · Zbl 0715.73072 · doi:10.1002/nme.1620281207
[277] Rao, K. M.; Meyer-Piening, H. R., Analysis of thick laminated anisotropic composites plates by the finite element method, Composite Structures, 15, 185-213 (1990) · doi:10.1016/0263-8223(90)90031-9
[278] Carrera, E., C^o Reissner-Mindlin multilayered plate elements including zig-zag and interlaminar stresses continuity, International Journal for Numerical Methods in Engineering, 39, 1797-1820 (1996) · Zbl 0885.73076 · doi:10.1002/(SICI)1097-0207(19960615)39:11<1797::AID-NME928>3.0.CO;2-W
[279] Carrera, E.; Kröplin, B., Zig-Zag and interlaminar equilibria effects in large deflection and postbuckling analysis of multilayered plates, Mechanics of Composite Materials and Structures, 4, 69-94 (1997)
[280] Carrera, E., An improved Reissner-Mindlin-Type model for the electromechanical analysis of multilayered plates including piezo-layers, Journal of Intelligent Materials System and Structures, 8, 232-248 (1997)
[281] Carrera, E.; Krause, H., An investigation on nonlinear dynamics of multilayered plates accounting forC_z^0 requirements, Computer & Structures, 69, 463-486 (1998) · Zbl 0941.74030 · doi:10.1016/S0045-7949(98)00112-6
[282] Carrera, E., A refined Multilayered Finite Element Model Applied to Linear and Nonlinear Analysis of Sandwich Structures, Composite Science and Technology, 58, 1553-1569 (1998) · doi:10.1016/S0266-3538(97)00215-7
[283] Carrera, E.; Parisch, H., Evaluation of geometrical nonlinear effects of thin and moderately thick multilayered composite shells, Composite Structures, 40, 11-24 (1998) · doi:10.1016/S0263-8223(97)00145-1
[284] Brank, B.; Carrera, E., Multilayered Shell Finite Element with Interlaminar Continuous Shear Stresses: A Refinement of the Reissner-Mindlin Formulation, International Journal for Numerical Methods in Engineering, 48, 843-874 (2000) · Zbl 0991.74066 · doi:10.1002/(SICI)1097-0207(20000630)48:6<843::AID-NME903>3.0.CO;2-E
[285] Carrera, E. and Demasi, L. (2000), “An assessment of Multilayered Finite Plate Element in view of the fulfillment of theC_z^0-Requirements”,AIMETA GIMC Conference, 340-348, Brescia, Nov. 13-15.
[286] Carrera, E. and Demasi, L. (2000), “Sandwich Plate Analysis by Finite Plate Element and Reissner Mixed Theorem”,V Int. Conf. on Sandwich Construction,I, 301-312, Zurich, Sept. 5-7. I
[287] Carrera, E. and Demasi, L., “Multilayered Finite Plate Element based on Reissner Mixed Variational Theorem. Part I: Theory”,International Journal for Numerical Methods in Engineering, to appear. · Zbl 1098.74686
[288] Carrera, E. and Demasi, L., “Multilayered Finite Plate Element based on Reissner Mixed Variational Theorem. Part II: Numerical Analysis”,International Journal for Numerical Methods in Engineering, to appear. · Zbl 1098.74687
[289] Ahamad, S.; Iron, B. M.; Zienkiewicz, O. C., Analysis of thick and thin shell structures by curved finite elements, International Journal for Numerical Methods in Engineering, 2, 419-471 (1970) · doi:10.1002/nme.1620020310
[290] Ramm, H. (1977), “A Plate/shell element for large deflection and rotations”, in K.J. Bathe (Eds.),Formulation and Computational Alghorthim in Finite Element Analysis, MIT Press.
[291] Kräkeland, B., Large displacement analysis and shell considering elastic-plastic and elasto-visco-plastic materials (1977), Norway: The Norwegian Institute of Technology, Norway
[292] Bathe, K. J.; Bolourichi, S., A geometric and material nonlinear plate and shell elements, Composite Structures, 11, 23-48 (1980) · Zbl 0463.73074 · doi:10.1016/0045-7949(80)90144-3
[293] Chang, T. Y.; Sawimiphakdi, K., Large deformation analysis of laminated shells by finite element method, Composite Structures, 13, 331-340 (1981) · Zbl 0456.73057 · doi:10.1016/0045-7949(81)90141-3
[294] Chao, W. C.; Reddy, J. N., Analysis of laminated composite shells using a degenerated 3D elements, International Journal for Numerical Methods in Engineering, 20, 1991-2007 (1984) · Zbl 0547.73052 · doi:10.1002/nme.1620201104
[295] Liao, C. L.; Reddy, J. N., A solid shell transient element for geometrically nonlinear analysis of laminated composite structures, International Journal for Numerical Methods in Engineering, 26, 1843-1854 (1988) · Zbl 0661.73049 · doi:10.1002/nme.1620260811
[296] Liao, C. L.; Reddy, J. N., A continuum-based stiffened shell element for geometrically nonlinear analysis of laminated composite structures, American Institute of Aeronautics and Astronautics Journal, 27, 95-101 (1989) · Zbl 0666.73035
[297] Pinsky, P. M.; Kim, K. K., A multi-director formulation for elastic-viscoelastic layered shells, International Journal for Numerical Methods in Engineering, 23, 2213-2224 (1986) · Zbl 0599.73065 · doi:10.1002/nme.1620231206
[298] Epstein, M.; Huttelmeier, H. P., A finite element formulation for multilayered and thick plates, Computer & Structures, 16, 645-650 (1983) · doi:10.1016/0045-7949(83)90113-X
[299] Simo, J. C.; Fox, D. D., On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parameterization, Computer Methods in Applied Mechanics and Engineering, 72, 276-304 (1989) · Zbl 0692.73062 · doi:10.1016/0045-7825(89)90002-9
[300] Simo, J. C.; Fox, D. D.; Rifai, M. S., On a stress resultant geometrically exact shell model. Part II: The linear theory, computational aspects, Computer Methods in Applied Mechanics and Engineering, 73, 53-93 (1989) · Zbl 0724.73138 · doi:10.1016/0045-7825(89)90098-4
[301] Simo, J. C.; Fox, D. D.; Rifai, M. S., On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory, Computer Methods in Applied Mechanics and Engineering, 79, 21-70 (1990) · Zbl 0746.73015 · doi:10.1016/0045-7825(90)90094-3
[302] Argyris, J.; Tenek, L., Linear and geometrically nonlinear bending of isotropic and multilayered composite plates by the natural mode method, Computer Methods in Applied Mechanics and Engineering, 113, 207-251 (1994) · Zbl 0848.73058 · doi:10.1016/0045-7825(94)90047-7
[303] Argyris, J.; Tenek, L., An efficient and locking free flat anisotropic plate and shell triangular element, Computer Methods in Applied Mechanics and Engineering, 118, 63-119 (1994) · Zbl 0851.73052 · doi:10.1016/0045-7825(94)00099-9
[304] Argyris, J.; Tenek, L., A practicable and locking-free laminated shallow shell triangular element of varying and adaptable curvature, Computer Methods in Applied Mechanics and Engineering, 119, 215-282 (1994) · Zbl 0854.73062 · doi:10.1016/0045-7825(94)90090-6
[305] Turn, J. Q.; Wang, Y. B.; Wang, Y. M., Three-dimensional asymptotic finite element method for anisotropic inhomogeneous and laminated plates, International Journal of Solids and Structures, 33, 1939-1960 (1996) · Zbl 0900.73864 · doi:10.1016/0020-7683(95)00129-8
[306] Babuska, I.; Szabo, B. A.; Actis, R. L., Hierarchy models for laminated composites, International Journal for Numerical Methods in Engineering, 33, 503-535 (1992) · Zbl 0825.73419 · doi:10.1002/nme.1620330304
[307] Szabo, B. A., Estimation and control of error based onp convergence, International Journal for Numerical Methods in Engineering, 33, 503-535 (1986)
[308] Szabo, B. A.; Sharman, G. J., Hierarchy plate and shell model based onp- extension, International Journal for Numerical Methods in Engineering, 26, 1855-1881 (1988) · Zbl 0661.73048 · doi:10.1002/nme.1620260812
[309] Merk, K.J. (1988), “Hierarchische, kontinuumbasiert Shalenelemente höhere Ordnung”, PhD, Institute für Statik und Dynamik, University of Stuttgart.
[310] Liu, J. H.; Surana, K. S., Piecewise hierarchical p-version axisymmetric shell element for laminated composites, Computer & Structures, 50, 367-381 (1994) · Zbl 0800.73434 · doi:10.1016/0045-7949(94)90006-X
[311] Fish, J.; Markolefas, S., Thes-version of the finite element method for multilayer laminates, International Journal for Numerical Methods in Engineering, 33, 1081-1105 (1992) · doi:10.1002/nme.1620330512
[312] Mote, C. D., Global-Local finite element, International Journal for Numerical Methods in Engineering, 3, 565-574 (1971) · Zbl 0248.65062 · doi:10.1002/nme.1620030410
[313] Pagano, N. J.; Soni, R. S., Global-Local laminate variational model, International Journal of Solids and Structures, 19, 207-228 (1983) · Zbl 0507.73061 · doi:10.1016/0020-7683(83)90058-6
[314] Noor, A. K., Global-Local methodologies and their application to non-linear analysis, Finite Element Analysis and Design, 2, 333-346 (1986) · doi:10.1016/0168-874X(86)90020-X
[315] Pian, T.H.H. (1964), “Derivation of element stiffness matrices by assumed stress distributions”,American Institute of Aeronautics and Astronautics Journal, 1333-1336.
[316] Pian, T.H.H. and Mau, S.T. (1972), “Some recent studies in assumed-stress hybrid models”, inAdvances in Computational Methods in Structural Mechanics and Design (Eds. Oden, Clought, Yamamoto).
[317] Mau, S. T.; Tong, P.; Pian, T. H.H., Finite element solutions for laminated thick plates, Journal of Composite Materials, 6, 304-311 (1972) · doi:10.1177/002199837200600212
[318] Spilker, R.L., Orringer, O. and Witmer, O. (1976), “Use of hybrid/stress finite element model for the static and dynamic analysis of multilayer composite plates and shells”, MIT ASRL TR 181-2.
[319] Spilker, R. L.; Chou, S. C.; Orringer, O., Alternate hybrid-stress elements for analysis of multilayer composite plates, Journal of Composite Materials, 11, 51-70 (1977) · doi:10.1177/002199837701100107
[320] Spilker, R.L. (1980), “A hybrid/stress formulation for thick multilayer laminates”, MIT ASRL TR 181-2. · Zbl 0453.73083
[321] Spilker, R. L., A hybrid/stress eight-node elements for thin and thick multilayer laminated plates, International Journal for Numerical Methods in Engineering, 18, 801-828 (1980) · Zbl 0484.73063 · doi:10.1002/nme.1620180602
[322] Moriya, K., Laminated plate and shell elements for finite element analysis of advanced fiber reinforced composite structure, Laminated Composite Plates, 52, 1600-1607 (1986)
[323] Liou, W. J.; Sun, C. T., A three-dimensional hybrid stress isoparametric element for the analysis of laminated composite plates, Computer & Structures, 25, 241-249 (1987) · Zbl 0602.73072 · doi:10.1016/0045-7949(87)90147-7
[324] Di, S.; Ramm, E., Hybrid stress formulation for higher-order theory of laminated shell analysis, Computer Methods in Applied Mechanics and Engineering, 109, 359-376 (1993) · Zbl 0847.73060 · doi:10.1016/0045-7825(93)90087-E
[325] Rothert, H.; Di, S., Geometrically non-linear analysis of laminated shells by hybrid formulation and higher order theory, Bulletin of the International Journal for Shell and Spatial Structures, IASS, 35, 15-32 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.