×

Powerful ideals, strongly primary ideals, almost pseudo-valuation domains, and conducive domains. (English) Zbl 1063.13017

Summary: Let \(R\) be a domain with quotient field \(K\), and let \(I\) be an ideal of \(R\). We say that \(I\) is powerful (strongly primary) if whenever \(x,y\in K\) and \(xy\in I\), we have \(x\in R\) or \(y\in R\) \((x\in I\) or \(y^n\in I\) for some \(n\geq 1)\). We show that an ideal with either of these properties is comparable to every prime ideal of \(R\), that an ideal is strongly primary \(\Leftrightarrow\) it is a primary ideal in some valuation overring of \(R\), and that \(R\) admits a powerful ideal \(\Leftrightarrow R\) admits a strongly primary ideal \(\Leftrightarrow R\) is conducive in the sense of D. E. Dobbs and R. Fedder [J. Algebra 86, 494–510 (1984; Zbl 0531.13002)]. Finally, we study domains each of whose prime ideals is strongly primary.

MSC:

13G05 Integral domains
13A15 Ideals and multiplicative ideal theory in commutative rings

Citations:

Zbl 0531.13002
Full Text: DOI

References:

[1] Anderson D.F., Houston J. Math. 9 pp 325– (1983)
[2] DOI: 10.1016/0304-4068(87)90018-8 · Zbl 0641.90021 · doi:10.1016/0304-4068(87)90018-8
[3] Badawi, A. 1995.A Visit to Valuation and Pseudo-Valuation Domains. Lecture Notes in Pure and Applied Mathematics 171263–276. New York: Marcel Dekker. · Zbl 0885.13015
[4] DOI: 10.1007/BF01171337 · Zbl 0585.13013 · doi:10.1007/BF01171337
[5] DOI: 10.1307/mmj/1029001014 · Zbl 0239.13001 · doi:10.1307/mmj/1029001014
[6] Dobbs D., Pacific J. Math. 67 pp 353– (1978) · Zbl 0326.13002 · doi:10.2140/pjm.1976.67.353
[7] DOI: 10.1016/0021-8693(84)90044-9 · Zbl 0531.13002 · doi:10.1016/0021-8693(84)90044-9
[8] DOI: 10.1080/00927879008824114 · Zbl 0741.13013 · doi:10.1080/00927879008824114
[9] Gilmer R., Multiplicative Ideal Theory (1972) · Zbl 0248.13001
[10] Hedstrom J., Pacific J. Math. 75 pp 137– (1978) · Zbl 0368.13002 · doi:10.2140/pjm.1978.75.137
[11] Hedstrom J., Houston J. Math. 4 pp 199– (1978)
[12] Kaplansky I., Commutative Rings (1974)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.