Cattaneo, Alberto S.; Felder, Giovanni Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model. (English) Zbl 1065.53063 Lett. Math. Phys. 69, Spec. Iss., 157-175 (2004). The paper under review is divided into six sections. Section 1 is a short introduction where the authors fix the picture of the paper. Section 2 describes the role of coisotropic submanifolds in Poisson geometry. Section 3 deals with the role of branes in a Poisson sigma model. The quantization problem makes the object of section 4. Some examples are sketched in section 5 and finally Kontsevich’s formalism is discussed in section 6. In conclusion, a very nice paper. Reviewer: Mircea Puta (Timişoara) Cited in 5 ReviewsCited in 48 Documents MSC: 53D17 Poisson manifolds; Poisson groupoids and algebroids 53D20 Momentum maps; symplectic reduction 53D55 Deformation quantization, star products 81T70 Quantization in field theory; cohomological methods 81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory Keywords:coisotropic submanifolds; branes; quantization × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link References: [1] Alexandrov, M. Kontsevich, M. Schwarz A and Zaboronsky, O.: The geometry of the master equation and topological quantum field theory, Internat. J. Modern Phys. A 12(1997), 1405-1430. · Zbl 1073.81655 · doi:10.1142/S0217751X97001031 [2] Bursztyn H. and Weinstein, A.: Picard groups in Poisson geometry, math.SG/0304048. · Zbl 1068.53055 [3] Cattaneo, A. S.: On the integration of Poisson manifolds, Lie algebroids, and coisotropic submanifolds, math.SG/0308180. · Zbl 1059.53064 [4] Cattaneo, A. S. and Felder, G.: A path integral approach to the Kontsevich quantization formula, Comm. Math. Phys. 212, (3) (2000), 591-612. · Zbl 1038.53088 · doi:10.1007/s002200000229 [5] Cattaneo, A. S. and Felder, G.: Poisson sigma models and symplectic groupoids, in: N. P. Landsman, M. Pflaum, and M. Schlichenmeier (eds), Quantization of Singular Symplectic Quotients, Progr. in Math. 198, Birkh”auser, Basel, 2001, pp. 61-93. · Zbl 1038.53074 [6] Cattaneo, A. S. and Felder, G.: On the AKSZ formulation of the Poisson sigma model, Lett. Math. Phys. 56(2001), 163-179. · Zbl 1058.81034 · doi:10.1023/A:1010963926853 [7] Cattaneo, A. S. and Felder, G.: in preparation [8] Cattaneo, A. S., Felder, G. and Tomassini, L.: From local to global deformation quantization of Poisson manifolds, Duke Math. J. 115(2) (2002), 329-352. · Zbl 1037.53063 · doi:10.1215/S0012-7094-02-11524-5 [9] Crainic, M and Fernandes, R. L.: Integrability of Lie brackets, Ann, Math. 157(2003),575-620. · Zbl 1037.22003 · doi:10.4007/annals.2003.157.575 [10] Ikeda, N.: Two-dimensional gravity and nonlinear gauge theory, Ann. Phys. 235(1994),435-464. · Zbl 0807.53070 · doi:10.1006/aphy.1994.1104 [11] Kapustin, A and Orlov, D.: Remarks on A-branes, mirror symmetry and the Fukaya category, hep-th/0109098. · Zbl 1029.81058 [12] Karasev, M. V.: The Maslov quantization conditions in higher cohomology and analogs of notions developed in Lie theory for canonical fibre bundles of symplectic manifolds. I, II, Selecta Math. Soviet. 8(1989), 212-234, 235-258. · Zbl 0704.58019 [13] Karasev, M. V.: Analogues of the objects of Lie group theory for nonlinear Poisson brackets (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 50(1986), 508-538, (English) Math. USSR-Izv. 28(1987), 497-527. Karasev M. V. and Maslov, V. P.: Nonlinear Poisson brackets, geometry and quantization, Transl. Math. Monogr. 119 (1993). · Zbl 0608.58023 [14] Kontsevich, M.: Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (3) (2003) 157-216. · Zbl 1058.53065 · doi:10.1023/B:MATH.0000027508.00421.bf [15] Landsman, N. P.: Quantized reduction as a tensor product, In: N. P. Landsman, M. Pflaum, and M. Schlichenmeier (eds), Quantization of Singular Symplectic Quotients, Progr. in Math. 198, Birkh”auser, Basel, 2001, pp. 137-180. · Zbl 1026.53051 [16] Landsman, N. P.: Functorial quantization and the Guillemin?Sternberg conjecture, math-ph/0307059. · Zbl 1179.58012 [17] Oh, Y. G. and Park, J. S.: Deformations of coisotropic submanifolds and strongly homotopy Lie algebroid, math.SG/0305292. [18] Schaller, P. and Strobl, T.: Poisson structure induced (topological) field theories, ModernPhys. Lett. A 9(33) (1994), 3129-3136. · Zbl 1015.81574 [19] Severa, P.: Some title containing the words ’homotopy’ and ’symplectic’, e.g. this one, math.SG/0105080. · Zbl 1102.58010 [20] Weinstein, A.: The local structure of Poisson manifolds, J. Differential Geom. 18 (1983), 523-557. · Zbl 0524.58011 [21] Weinstein, A.: Symplectic groupoids and Poisson manifolds, Bull. Amer. Math. Soc. 16(1987), 101-104. · Zbl 0618.58020 · doi:10.1090/S0273-0979-1987-15473-5 [22] Weinstein, A.: Coisotropic calculus and Poisson groupoids, J. Math, Soc. Japan 40(1988), 705-727. · Zbl 0642.58025 · doi:10.2969/jmsj/04040705 [23] Zakrzewski, S.: Quantum and classical pseudogroups, Part I: Union pseudogroups and their quantization, Comm. Math. Phys. 134(1990), 347-370; Quantum and classical pseudogroups, Part II: Differential and symplectic pseudogroups, Comm. Math. Phys. 134 (1990), 371-395. · Zbl 0708.58030 · doi:10.1007/BF02097706 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.