×

On the behavior of some two-variable \(p\)-adic \(L\)-functions. (English) Zbl 1067.11076

The Kubota–Leopoldt \(p\)-adic \(L\)-function \(L_p(s,\chi)\) possesses a natural extension to a two variable function \(L_p(s,t,\chi)\) introduced by G.Fox [Enseign. Math., II. Sér. 46, No. 3–4, 225–278 (2000; Zbl 0999.11073)]. This function is defined for all \(t\) in the valuation ring of \({\mathbb C}_p\) and satisfies \(L_p(s,0,\chi)=L_p(s,\chi)\). The author expresses \(L_p(s,t,\chi)\) by means of a \(p\)-adic integral. For \(\chi\) a power of the Teichmüller character, this representation allows him to extend the domain of definition of \(L_p(s,t,\chi)\) to include \(t\in q^{-1}{\mathbb Z}_p\) (here, as usual, \(q\) equals \(p\) or 4 according as \(p>2\) or \(p=2\), respectively). As another consequence the author obtains new systems of congruences for generalized Bernoulli polynomials improving previous results by Fox, H. S. Gunaratne, and himself. If \(f_\chi\), the conductor of \(\chi\), is not a \(p\)-power, the results also yield a generalization of formulas for the derivative \(L_p'(0,\chi)\). Finally, for \(f_\chi\) unequal to 1 or \(qp^e\) (\(e\geq 1\)), the author constructs two different extensions of \(L_2(s,t,\chi)\) to values of \(t\) in \(2^{-1}{\mathbb Z}_2\).

MSC:

11S40 Zeta functions and \(L\)-functions
11B68 Bernoulli and Euler numbers and polynomials
11R42 Zeta functions and \(L\)-functions of number fields

Citations:

Zbl 0999.11073
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Carlitz, L., Some congruences for the Bernoulli numbers, Amer. J. Math., 75, 163-172 (1953) · Zbl 0050.03902
[2] Carlitz, L., Arithmetic properties of generalized Bernoulli numbers, J. Reine Angew. Math., 202, 174-182 (1959) · Zbl 0125.02202
[3] Diamond, J., The \(p\)-adic log gamma function and \(p\)-adic Euler constants, Trans. Amer. Math. Soc., 233, 321-337 (1977) · Zbl 0382.12008
[4] Diamond, J., On the values of \(p\)-adic \(L\)-functions at positive integers, Acta Arith., 35, 223-237 (1979) · Zbl 0463.12007
[5] Dwork, B., Lectures on \(p\)-adic Differential Equations (1982), Springer: Springer New York · Zbl 0502.12021
[6] Ferrero, B.; Greenberg, R., On the behavior of \(p\)-adic \(L\)-functions at \(s=0\), Invent. Math., 50, 91-102 (1978) · Zbl 0441.12003
[7] Fox, G., A \(p\)-adic \(L\)-function of two variables, L’Enseign. Math., 46, 225-278 (2000) · Zbl 0999.11073
[8] H.S. Gunaratne, A new generalisation of the Kummer congruence, in: Computational Algebra and Number Theory, Mathematics and its Applications, Vol. 325, Kluwer Academic Publishers, Dordrecht, 1995, pp. 255-265.; H.S. Gunaratne, A new generalisation of the Kummer congruence, in: Computational Algebra and Number Theory, Mathematics and its Applications, Vol. 325, Kluwer Academic Publishers, Dordrecht, 1995, pp. 255-265. · Zbl 0833.11005
[9] K. Iwasawa, Lectures on \(pL\); K. Iwasawa, Lectures on \(pL\) · Zbl 0236.12001
[10] Kubota, T.; Leopoldt, H. W., Eine \(p\)-adische Theorie der Zetawerte I, J. Reine Angew. Math., 214/215, 328-339 (1964) · Zbl 0186.09103
[11] Washington, L., Introduction to Cyclotomic Fields (1982), Springer: Springer New York · Zbl 0484.12001
[12] Young, P. T., Congruences for Bernoulli, Euler, and Stirling numbers, J. Number Theory, 78, 204-227 (1999) · Zbl 0939.11014
[13] Young, P. T., Kummer congruences for values of Bernoulli and Euler polynomials, Acta Arith., 99, 277-288 (2001) · Zbl 0982.11008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.