×

Multiple structures of two-dimensional nonlinear Rossby wave. (English) Zbl 1067.35071

Summary: The elliptic equation is taken as a transformation and applied to solve the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. It is shown that more kinds of solutions are derived, such as periodic solutions of rational form, periodic solutions and so on.

MSC:

35Q35 PDEs in connection with fluid mechanics
76B65 Rossby waves (MSC2010)
37K20 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with algebraic geometry, complex analysis, and special functions
35C05 Solutions to PDEs in closed form
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Gottwalld GA, The Zakharov-Kuznetsov equation as a two-dimenional model for nonlinear Rossby wave. arXiv: nlin, 0312009; 2003; Gottwalld GA, The Zakharov-Kuznetsov equation as a two-dimenional model for nonlinear Rossby wave. arXiv: nlin, 0312009; 2003
[2] Iwasaki, H.; Toh, S.; Kawahara, T., Phys. D, 43, 293 (1990) · Zbl 0714.35076
[3] Fu, Z. T.; Liu, S. D.; Liu, S. K., Commun. Theor. Phys., 39, 5, 531 (2003) · Zbl 1267.35114
[4] Fu, Z. T.; Liu, S. K.; Liu, S. D., Commun. Theor. Phys., 40, 3, 285 (2003) · Zbl 1167.35366
[5] Fu, Z. T.; Chen, Z.; Liu, S. K.; Liu, S. D., Commun. Theor. Phys., 41, 5, 675 (2004) · Zbl 1167.35412
[6] Fu, Z. T.; Liu, S. D.; Liu, S. K.; Chen, Z., Chaos, Solitons & Fractals, 22, 2, 335 (2004) · Zbl 1061.76013
[7] Liu, S. K.; Liu, S. D., Nonlinear equations in physics (2000), Peking University Press: Peking University Press Beijing
[8] Fan, E. G., Phys. Lett. A, 277, 212 (2000) · Zbl 1167.35331
[9] Yan, Z. Y.; Zhang, H. Q., Phys. Lett. A, 285, 355 (2001) · Zbl 0969.76518
[10] Bowman, F., Introduction to elliptic functions with applications (1959), Universities: Universities London · Zbl 0052.07102
[11] Prasolov, V.; Solovyev, Y., Elliptic functions and elliptic integrals (1997), American Mathematical Society: American Mathematical Society Providence R.I. · Zbl 0946.11001
[12] Wang, Z. X.; Guo, D. R., Special Functions (1989), World Scientific Publishing: World Scientific Publishing Singapore · Zbl 0724.33001
[13] Clarkson, P. A.; Mansfield, E. L., Phys. D, 70, 250 (1993)
[14] Coleman, C. J., J. Aust. Math. Soc. Ser. B, 33, 1 (1992)
[15] Kudryashov, N. A.; Zargaryan, D., J. Phys. A, 29, 8067 (1996) · Zbl 0901.35090
[16] Smyth, N. F., J. Aust. Math. Soc. Ser. B, 33, 403 (1992) · Zbl 0758.35042
[17] Yan, C. T., Phys. Lett. A, 224, 77 (1996) · Zbl 1037.35504
[18] Wang, M. L., Phys. Lett. A, 199, 169 (1995)
[19] Parkes, E. J.; Duffy, B. R., Phys. Lett. A, 229, 217 (1997) · Zbl 1043.35521
[20] Fu, Z. T.; Liu, S. K.; Liu, S. D.; Zhao, Q., Phys. Lett. A, 290, 72 (2001) · Zbl 0977.35094
[21] Liu, S. K.; Fu, Z. T.; Liu, S. D.; Zhao, Q., Phys. Lett. A, 289, 69 (2001) · Zbl 0972.35062
[22] Hirota, R., J. Math. Phys., 14, 810 (1973) · Zbl 0261.76008
[23] Kudryashov, N. A., Phys. Lett. A, 147, 287 (1990)
[24] Fu, Z. T.; Liu, S. K.; Liu, S. D., Phys. Lett. A, 299, 507 (2002) · Zbl 0996.35044
[25] Liu, S. K.; Fu, Z. T.; Liu, S. D.; Zhao, Q., Appl. Math. Mech., 22, 326 (2001) · Zbl 0985.35079
[26] Otwinowski, M.; Paul, R.; Laidlaw, W. G., Phys. Lett. A, 128, 483 (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.