Nonlinear stability of Runge-Kutta methods applied to infinite-delay-differential equations. (English) Zbl 1068.65106

The infinite delay-differential equation \[ \begin{gathered} y^1(t)= f(t, y(t), y(pt)),\qquad t> 0,\\ y(0)= \mu\end{gathered} \] is studied in \(\mathbb{C}^d\), where \(p\in (0,1)\), \(f(t,y,z)\) is contractive with constants \(\alpha\) and \(\beta\) toward \(y\) and \(z\), respectively, and \(\beta\leq p\alpha\).
The authors divide \([0,\infty]\) into a sum of subintervals \(D_q= (T_q, T_{q+1}]\) and apply a Runge-Kutta \((k, 1)\)-algebraically stable method to the resolution of the problem. The global stability is a concept of long-time stability and the authors prove that the Runge-Kutta-method for a nonnegative matrix \(D\) is globally stable and asymptotically stable. In the proof of this result new conditions on the sizes \(\alpha\), \(\beta\), \(\gamma\), \(p\) and the choice of the step \(h\) are imposed.


65L20 Stability and convergence of numerical methods for ordinary differential equations
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
34K28 Numerical approximation of solutions of functional-differential equations (MSC2010)
65L05 Numerical methods for initial value problems involving ordinary differential equations


Full Text: DOI


[1] Zennaro, M., Asymptotic stability analysis of Runge-Kutta methods for nonlinear systems of delay differential equations, Numer. Math., 77, 549-563 (1997) · Zbl 0886.65092
[2] Buhmann, M. D.; Iserles, A.; Nørsett, S. P., Runge-Kutta methods for neutral differential equations, World Sci. Ser. Appl. Anal., 2, 85-98 (1993) · Zbl 0834.65061
[3] Buhmann, M. D.; Iserles, A., On the dynamics of a discretized neutral equation, IMA J. Numer. Anal., 12, 339-363 (1992) · Zbl 0759.65056
[4] Buhmann, M. D.; Iserles, A., Stability of the discretized pantograph differential equation, Math. Comp., 60, 575-589 (1993) · Zbl 0774.34057
[5] Iserles, A., Numerical analysis of delay differential equations with variable delays, Ann. Numer. Math., 1, 133-152 (1994) · Zbl 0828.65083
[6] Liu, Y., Stability analysis of 0-methods for neutral functional-differential equations, Numer. Math., 70, 473-485 (1995) · Zbl 0824.65081
[7] Liu, Y., On the θ-methods for delay differential equations with infinite lag, J. Comput. Appl. Math., 71, 177-190 (1996) · Zbl 0853.65076
[8] Bellen, A.; Guglielmi, N.; Torelli, L., Asymptotic stability properties of θ-methods for the pantograph equation, Appl. Numer. Math., 24, 279-293 (1997) · Zbl 0878.65064
[9] Iserles, A., Exact and discretized stbility of the pantograph equation, Appl. Numer. Math., 24, 295-308 (1997) · Zbl 0880.65058
[10] Torelli, L., Stability of numerical methods for delay differential equations, J. Comput. Appl. Math., 25, 15-26 (1989) · Zbl 0664.65073
[11] Bellen, A.; Zennaro, M., Strong contractivity properties of numerical methods for ordinary and delay differential equations, Appl. Numer. Math., 9, 321-346 (1992) · Zbl 0749.65042
[12] Zennaro, M., Contractivity of Runge-Kutta methods with respect to forcing terms, Appl. Numer. Math., 10, 321-345 (1993) · Zbl 0774.65054
[13] Zhang, C. J.; Zhou, S. Z., Nonlinear stability and D-convergence of Runge-Kutta methods for delay differential equations, J. Comput. Appl. Math., 85, 225-237 (1997) · Zbl 0904.65082
[14] Huang, C. M.; Fu, H. Y.; Li, S. F.; Chen, G. N., Stability analysis of Runge-Kutta methods for nonlinear delay differential equations, BIT, 39, 270-280 (1999) · Zbl 0930.65090
[15] Huang, C. M.; Li, S. F.; Fu, H. Y.; Chen, G. N., Stability and error analysis of one-leg methods for nonlinear delay differential equations, J. Comput. Appl. Math., 103, 263-279 (1999) · Zbl 0948.65078
[16] Zhang, C. J.; Sun, G., The discrete dynamics of nonlinear infinite-delay-differential equations, Appl. Math. Lett., 15, 5, 521-526 (2002) · Zbl 1001.65091
[17] Burrage, K.; Butcher, J. C., Nonlinear stability of a general class of differential equations methods, BIT, 20, 185-203 (1980) · Zbl 0431.65051
[18] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (1991), Springer-Verlag: Springer-Verlag Berlin · Zbl 0729.65051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.