×

Multiple \(\text{D}0\)-branes in weakly curved backgrounds. (English) Zbl 1068.81582

Summary: We investigate further our recent proposal for the form of the matrix theory action in weak background fields. Using Seiberg’s scaling argument we relate the matrix theory action to a low-energy system of many D0-branes in an arbitrary but weak NS-NS and R-R background. The resulting multiple D0-brane action agrees with the known Born-Infeld action in the case of a single brane and gives an explicit formulation of many additional terms which appear in the multiple brane action. The linear coupling to an arbitrary background metric satisfies the non-trivial consistency condition suggested by Douglas that the masses of off-diagonal fields are given by the geodesic distance between the corresponding pair of D0-branes. This agreement arises from combinatorial factors which depend upon the symmetrized trace ordering prescription found earlier for higher moments of the matrix theory stress-energy tensor. We study the effect of a weak background metric on two graviton interactions and find that our formalism agrees with the results expected from supergravity. The results presented here can be T-dualized to give explicit formulae for the operators in any D-brane world-volume theory which couple linearly to bulk gravitational fields and their derivatives.

MSC:

81T20 Quantum field theory on curved space or space-time backgrounds
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Witten, E., String Theory Dynamics in Various Dimensions, Nucl. Phys. B, 443, 85 (1995), hep-th/9503124 · Zbl 0990.81663
[2] Polchinski, J., Dirichlet-Branes and Ramond-Ramond Charges, Phys. Rev. Lett., 75, 4724 (1995), hep-th/9510017 · Zbl 1020.81797
[4] Leigh, R. G., Dirac-Born-Infeld action from Dirichlet sigma model, Mod. Phys. Lett. A, 4, 2767 (1989)
[6] Li, M., Bound states of D-branes and Dy-strings, Nucl. Phys. B, 460, 351 (1996), hep-th/9510161 · Zbl 1003.81528
[7] Witten, E., Bound States of Strings and p-Branes, Nucl. Phys. B, 460, 335 (1996), hep-th/9510135 · Zbl 1003.81527
[8] Tseytlin, A. A., On Non-Abelian Generalisation of Born-Infeld Action in String Theory, Nucl. Phys. B, 501, 41 (1997), hep-th/9701125 · Zbl 0939.81030
[9] Seiberg, N., Why is the Matrix Model Correct?, Phys. Rev. Lett., 79, 3577 (1997), hep-th/9710009 · Zbl 0946.81062
[10] Sen, A., D0 Branes on \(T^n\) and Matrix Theory, Adv. Theor. Math. Phys., 2, 51 (1998), hep-th/9709220 · Zbl 0907.58087
[11] Banks, T.; Fischler, W.; Shenker, S.; Susskind, L., M Theory as a Matrix Model: A Conjecture, Phys. Rev. D, 55, 5112 (1997), hep-th/9610043
[13] Taylor, W.; Van Raamsdonk, M., Supergravity currents and linearized interactions for matrix theory configurations with fermion backgrounds, JHEP 9904, 013 (1999), hep-th/9812239
[14] Taylor, W.; Van Raamsdonk, M., Angular momentum and long-range gravitational interactions in Matrix theory, Nucl. Phys. B, 532, 227 (1998), hep-th/9712159 · Zbl 1078.81555
[15] Kabat, D.; Taylor, W., Linearized supergravity from Matrix theory, Phys. Lett. B, 426, 297 (1998), hep-th/9712185 · Zbl 1049.83533
[16] Douglas, M. R., D-branes in curved space, Adv. Theor. Math. Phys., 1, 198 (1998), hep-th/9703056 · Zbl 0907.32005
[17] Douglas, M. R.; Kabat, D.; Pouliot, P.; Shenker, S., D-Branes and Short Distances in String Theory, Nucl. Phys. B, 485, 85 (1997), hep-th/9608024 · Zbl 0925.81232
[18] Taylor, W., D-brane Field Theory on Compact Spaces, Phys. Lett. B, 394, 283 (1997), hep-th/9611042
[19] Witten, E., Small Instantons in String Theory, Nucl. Phys. B, 460, 541 (1996), hep-th/9511030 · Zbl 0935.81052
[20] Taylor, W., Lectures on D-branes, gauge theory and M (atrices), (Proceedings of Trieste summer school (1997)), to appear; hep-th/9801182
[21] Van Raamsdonk, M., Conservation of supergravity currents from matrix theory, Nucl. Phys. B, 542, 262 (1999), hep-th/9803003 · Zbl 0953.83032
[22] Bershadsky, M.; Vafa, C.; Sadov, V., D-branes and topological field theories, Nucl. Phys. B, 463, 420 (1996), hep-th/9511222 · Zbl 1004.81560
[23] Green, M. B.; Harvey, J. A.; Moore, G., I-brane Info and anomalous couplings on D-branes, Class. Quant. Grav., 14, 47 (1997), hep-th/9605033 · Zbl 0867.53063
[24] Cheung, Y.-K. E.; Yin, Z., Anomalies, branes, and currents, Nucl. Phys. B, 517, 69 (1998), hep-th/9710206 · Zbl 0945.81061
[25] Minasian, R.; Moore, G., K theory and Ramond-Ramond charge, JHEP 9711:002 (1997), hep-th/9710230 · Zbl 0949.81511
[26] Ganor, O. J.; Ramgoolam, S.; Taylor, W., Branes, Fluxes and Duality in M (atrix)-Theory, Nucl. Phys. B, 492, 191 (1997), hep-th/9611202 · Zbl 1004.81542
[27] Banks, T.; Seiberg, N.; Shenker, S., Branes from Matrices, Nucl. Phys. B, 497, 41 (1997), hep-th/9612157
[28] Douglas, M. R.; Kato, A.; Ooguri, H., D-brane actions on Kaehler manifolds, Adv. Theor. Math. Phys., 1, 237 (1998), hep-th/9708012
[29] Weinberg, S., Gravitation and Cosmology (1972), Wiley: Wiley New York
[30] Okawa, Y.; Yoneya, T., Multibody interactions of D-particles in supergravity and matrix theory, Nucl. Phys. B, 538, 67 (1999), hep-th/9806108 · Zbl 0940.83026
[36] Douglas, M. R.; Ooguri, H.; Shenker, S., Issues in M (atrix) Theory Compactification, Phys. Lett. B, 402, 36 (1997), hep-th/9702203
[37] Douglas, M. R.; Ooguri, H., Why Matrix Theory is Hard, Phys. Lett. B, 425, 71 (1998), hep-th/9710178
[38] Maldacena, J., The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2, 231 (1998), hep-th/9711200 · Zbl 0914.53047
[39] Klebanov, I. R., World volume approach to absorption by non-dilatonic branes, Nucl. Phys. B, 496, 231 (1997), hep-th/9702076 · Zbl 0939.81021
[40] Gubser, S. S.; Klebanov, I. R.; Tseytlin, A. A., String theory and classical absorption by three-branes, Nucl. Phys. B, 499, 217 (1997), hep-th/9703040 · Zbl 0959.81071
[42] Das, S. R.; Trivedi, S. P., Three-brane action and the correspondence between \(N = 4\) Yang-Mills theory and anti-de Sitter space, Phys. Lett. B, 445, 142 (1998), hep-th/9804149
[43] Kim, H. J.; Romans, L. J.; van Nieuwenhuizen, P., Mass spectrum of chiral ten-dimensional \(N = 2\) supergravity on \(S^5\), Phys. Rev. D, 32, 389 (1985)
[44] Gunaydin, M.; Marcus, N., The spectrum of the \(S^5\) compactification of the chiral \(N = 2\), D = 10 supergravity and the unitarity supermultiplets of \(U(2,2|4)\), Class. Quan. Grav., 2, L11 (1985) · Zbl 0575.53060
[45] Gubser, S. S.; Klebanov, I. R.; Polyakov, A. M., Gauge theory correlators from non-critical string theory, Phys. Lett. B, 428, 105 (1998), hep-th/9802109 · Zbl 1355.81126
[46] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 231 (1998), hep-th/9802150
[47] D’Hoker, E.; Freedman, D.; Skiba, W., Field theory tests for correlators in the AdS/CFT correspondence, Phys. Rev. D, 59, 045008 (1999), hep-th/9807098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.