Chee, Chin Yi; Xu, Daolin Secure digital communication using controlled projective synchronisation of chaos. (English) Zbl 1068.94010 Chaos Solitons Fractals 23, No. 3, 1063-1070 (2005). Summary: A new approach to chaos communication is proposed to encrypt digital information using controlled projective synchronisation. The scheme encrypts a binary sequence by manipulating the scaling feature of synchronisation from the coupled system. The transmitted signal therefore embeds only a single set of statistical properties. This prevents cryptanalysts from breaking the chaotic encryption scheme by using characteristic cryptanalysis that aims to detect switching of statistical properties in the intercepted information carrier signal. A pseudo-random switching key is incorporated into the scheme to mask out the deterministic nature of the underlying coupled system. Cited in 38 Documents MSC: 94A60 Cryptography 94A05 Communication theory 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior 68P25 Data encryption (aspects in computer science) PDF BibTeX XML Cite \textit{C. Y. Chee} and \textit{D. Xu}, Chaos Solitons Fractals 23, No. 3, 1063--1070 (2005; Zbl 1068.94010) Full Text: DOI References: [1] Kocarev, L.; Halle, K. S.; Eckert, K.; Chua, L. O.; Parlitz, U., Int. J. Bifurcat. Chaos, 2, 709 (1992) [2] Cuomo, K. M.; Oppenheim, A. V., Phys. Rev. Lett., 71, 65 (1993) [3] Halle, K. S.; Wu, C. W.; Itoh, M.; Chua, L. O., Int. J. Bifurcat. Chaos, 3, 469 (1993) [4] Parlitz, U.; Chua, L. O.; Kocarev, L.; Halle, K. S.; Shang, A., Int. J. Bifurcat. Chaos, 2, 973 (1992) [5] Pecora, L. M.; Carroll, T. L., Phys. Rev. Lett., 64, 821 (1990) [6] Pérez, G.; Cerdeira, H. A., Phys. Rev. Lett., 74, 1970 (1995) [7] Yang, T.; Yang, L.-B.; Yang, C.-M., Phys. Lett. A, 247, 105 (1998) [8] Storm, C.; Freeman, W. J., Phys. Rev. E, 66, 057202 (2002) [9] Yang, T.; Yang, L.-. B.; Yang, C.-. M., IEEE Trans. Circuits Syst. I, 45, 10, 1062 (1998) [10] Stojanovski, T.; Kocarev, L.; Parlitz, U., Int. J. Bifurcat. Chaos, 6, 2645 (1996) [11] Yang, T.; Yang, L.-B.; Yang, C.-M., Physica D, 124, 248 (1998) [12] Huang, X.; Xu, J.; Huang, W.; Lu, Z., Int. J. Bifurcat. Chaos, 11, 561 (2001) [13] Ponomarenko, V. I.; Prokhorov, M. D., Phys. Rev. E, 66, 026215 (2002) [14] Sundar, S.; Minai, A. A., Phys. Rev. Lett., 85, 5456 (2002) [15] Chen, J. Y.; Wong, K. W.; Cheng, L. M.; Shuai, J. W., Chaos, 13, 508 (2003) [16] Mainieri, R.; Rehacek, J., Phys. Rev. Lett., 82, 3042 (1999) [17] Xu, D.; Chee, C. Y., Phys. Rev. E, 66, 046218 (2002) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.