×

On well-posedness results for Camassa-Holm equation on the line: a survey. (English) Zbl 1069.35076

Summary: We survey recent results on well-posedness, blow up phenomena, lifespan and global existence for the Camassa-Holm equation. Results on weak solutions are also considered.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abdelouhab L, Physica D 40 pp 360– (1989) · Zbl 0699.35227 · doi:10.1016/0167-2789(89)90050-X
[2] Beals R, Inverse Problems 15 pp 1– (1999) · Zbl 0923.35154 · doi:10.1088/0266-5611/15/1/001
[3] Camassa R, Phys. Rev. Lett. 71 pp 1661– (1993) · Zbl 0972.35521 · doi:10.1103/PhysRevLett.71.1661
[4] Camassa R, Adv. Appl. Mech. 31 pp 1– (1994) · doi:10.1016/S0065-2156(08)70254-0
[5] Constantin A, Annales de l’Institut Fourier 50 pp 321– (2000) · doi:10.5802/aif.1757
[6] Constantin A, Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci. 457 pp 953– (2001) · Zbl 0999.35065 · doi:10.1098/rspa.2000.0701
[7] Constantin A, Annali Scuola Norm. Sup. Pisa 26 pp 303– (1998)
[8] Constantin A, Acta Mathematica 181 pp 229– (1998) · Zbl 0923.76025 · doi:10.1007/BF02392586
[9] Constantin A, Indiana Univ. Math. J. 47 pp 1527– (1998)
[10] Constantin A, J. Phys. A 35 pp R51– (2002) · Zbl 1039.37068 · doi:10.1088/0305-4470/35/32/201
[11] Constantin A, Comment. Math. Helv. 78 pp 787– (2003) · Zbl 1037.37032 · doi:10.1007/s00014-003-0785-6
[12] Constantin A, Comm. Pure Appl. Math. 53 pp 603– (2000) · Zbl 1049.35149 · doi:10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
[13] Constantin A, Comm. Math. Phys. 211 pp 45– (2000) · Zbl 1002.35101 · doi:10.1007/s002200050801
[14] Constantin A, Physica D 157 pp 75– (2001) · Zbl 0984.35139 · doi:10.1016/S0167-2789(01)00298-6
[15] Danchin R, Diff. Int. Eq. 14 pp 953– (2001)
[16] Danchin R, J. Differential Equations 192 pp 429– (2003) · Zbl 1048.35076 · doi:10.1016/S0022-0396(03)00096-2
[17] Fokas A S, Physica D 4 pp 47– (1981) · Zbl 1194.37114 · doi:10.1016/0167-2789(81)90004-X
[18] Himonas A, Diff. Int. Eq. 14 pp 821– (2001)
[19] Johnson R S, J. Fluid Mech. 455 pp 63– (2002) · Zbl 1037.76006 · doi:10.1017/S0022112001007224
[20] Kenig C E, Comm. Pure Appl. Math. 46 pp 527– (1993) · Zbl 0808.35128 · doi:10.1002/cpa.3160460405
[21] Koch H, Preprint (2002)
[22] Lenells J, J. Nonlinear Math. Phys. 9 pp 389– (2002) · Zbl 1014.35082 · doi:10.2991/jnmp.2002.9.4.2
[23] Li Y, J. Differential Equations 162 pp 27– (2000) · Zbl 0958.35119 · doi:10.1006/jdeq.1999.3683
[24] Lions J L, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires (1969)
[25] Misiolek G, J. Geom. Phys. 24 pp 203– (1998) · Zbl 0901.58022 · doi:10.1016/S0393-0440(97)00010-7
[26] Rodriguez-Blanco G, Nonlinear Anal. 14 pp 309– (2001) · Zbl 0980.35150 · doi:10.1016/S0362-546X(01)00791-X
[27] Xin Z, Comm. Pure Appl. Math. 53 pp 1411– (2000) · Zbl 1048.35092 · doi:10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5
[28] Xin Z, Comm. Partial Diff. Eq. 27 pp 1815– (2002) · Zbl 1034.35115 · doi:10.1081/PDE-120016129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.