Homoclinic orbits and periodic solitons for Boussinesq equation with even constraint. (English) Zbl 1070.35029

Summary: We study the explicit homoclinic orbits solutions for the “bad” Boussinesq equation with periodic boundary condition and even constraint, and periodic soliton solutions for the “good” Boussinesq equation with even constraint.


35Q35 PDEs in connection with fluid mechanics
37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010)
Full Text: DOI


[1] Zakharov, V. E., Collapse of langmuir waves, Sov Phys JETP, 35, 908-912 (1972)
[2] Ablowitz, M. J.; Hernst, B. M., SIAM J Appl Math, 50, 339 (1990) · Zbl 0707.35141
[3] Ercolani, N.; Forest, M. G.; Mclaughlin:, D. W., Phys D, 43, 349 (1990) · Zbl 0705.58026
[4] Ablowitz, M. J.; Herbst, B. M.; Schober, C. M., J Comput Phys, 126, 299 (1996) · Zbl 0866.65064
[5] Herbst, B. M.; Ablowitz, M. J.; Ryan, E., Comput Phys Commun, 65, 137 (1991) · Zbl 0900.65350
[6] Mckean, H. P., Common Pure Appl Math, XXXIV, 599-691 (1981) · Zbl 0473.35070
[7] Hirota, R., Phys Rev Lett, 27, 1192 (1971) · Zbl 1168.35423
[8] Hirota R, Satsuma J. 2000;53(3):283-99; Hirota R, Satsuma J. 2000;53(3):283-99
[9] Bona, J. L.; Sachs, R. L., Commun Math Phys, 118, 15-29 (1988) · Zbl 0654.35018
[10] Weiss, J., J Math Phys, 26, 258-269 (1985) · Zbl 0565.35103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.