Bäcklund transformation and soliton solutions for KP equation. (English) Zbl 1070.35059

Summary: A new representation of the \(N\)-soliton solution and the novel \(N\)-soliton solution for the KP equation are derived through a new form Bäcklund transformation.


35Q53 KdV equations (Korteweg-de Vries equations)
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
Full Text: DOI


[1] Kadomtsev, B. B.; Petviashvili, V. I., Sov Phys Doklady, 15, 539 (1970) · Zbl 0217.25004
[2] Zakharov, V. E.; Shabat, A. B., Sov Sci Rev, A1, 133 (1980)
[3] Satsuma, J., J Phys Soc Jpn, 40, 286 (1976) · Zbl 1334.35296
[4] Hirota, R., Soliton, (Bullough, R. K.; Caudrey, P. J., Direct methods in soliton theory (1980), Springer: Springer Berlin) · Zbl 0638.35071
[5] Wadati, M.; Sawada, K., J Phys Sco Jpn, 48, 312 (1980), 1980;48:319
[6] Ohkuma, K.; Wadati, M., J Phys Sco Jpn, 52, 749 (1983)
[7] Freeman, N. C.; Nimmo, J. J.C., Phys Lett A, 95, 1 (1983)
[8] Deng, S. F.; Chen, D. Y., J Phys Soc Jpn, 70, 3174 (2001) · Zbl 0985.35078
[9] Zhang, Y.; Chen, D. Y., Chaos, Solitons & Fractals, 20, 343 (2004) · Zbl 1046.35106
[10] Zhang, Y.; Chen, D. Y., Chaos, Solitons & Fractals, 23, 175 (2005) · Zbl 1070.35046
[11] Ablowitz, M. J.; Segur, H., Soliton and inverse scattering transform (1981), SIAM: SIAM Philadelphia · Zbl 0299.35076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.