×

On the topological structure of almost automorphic and asymptotically almost automorphic solutions of differential and integral equations in abstract spaces. (English) Zbl 1071.34055

Summary: The main purpose of this paper is to deal with almost automorphic and asymptotically almost automorphic solutions of the initial value problem as well as the nonlinear Volterra integral equation in Banach spaces. We obtain a collection of existence results of such solutions to these equations. We investigate also the topological structure of such solution sets. Moreover, we prove Aronszjan-type theorems for solutions of the initial value problem as well as the nonlinear Volterra integral equation, defined on the whole real line.

MSC:

34G20 Nonlinear differential equations in abstract spaces
45D05 Volterra integral equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agarwal, R. P.; Meehan, M.; O’Regan, D., Nonlinear Integral Equations and Inclusions (2001), Nova Science Publ.: Nova Science Publ. New York
[2] Aronszajn, N., Le correspondant topologique de l’unicité dans la théorie des équation différentielles, Ann. Math., 43, 730-738 (1942) · Zbl 0061.17106
[3] J. Banaś, K. Goebel, Measures of Noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, vol. 60, Marcel Dekker, New York, Basel, 1980.; J. Banaś, K. Goebel, Measures of Noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, vol. 60, Marcel Dekker, New York, Basel, 1980. · Zbl 0441.47056
[4] Bochner, S., Continuous mappings of almost automorphic and almost periodic functions, Proc. Natl. Acad. Sci. USA, 52, 907-910 (1964) · Zbl 0134.30102
[5] Bochner, S., Uniform convergence of monotone sequence of functions, Proc. Natl. Acad. Sci. USA, 47, 582-585 (1961) · Zbl 0103.05304
[6] Bochner, S., A new approach to almost-periodicity, Proc. Natl. Acad. Sci. USA, 48, 2039-2043 (1962) · Zbl 0112.31401
[7] Bugajewska, D., On implicit Darboux problem in Banach spaces, Bull. Austral. Math. Soc., 56, 149-156 (1997) · Zbl 0886.34056
[8] Bugajewska, D., On the structure of solution sets of differential equations in Banach spaces, Math. Slovaca, 50, 4, 463-471 (2000) · Zbl 0997.34049
[9] Bugajewski, D., Some remarks on Kuratowski’s measure of noncompactness in vector spaces with a metric, Comm. Math., 32, 5-9 (1992) · Zbl 0772.47031
[10] Bugajewski, D., On the existence of weak solutions of integral equations in Banach spaces, Comment. Math. Univ. Carolinae, 35, 35-41 (1994) · Zbl 0816.45012
[11] R. Dragoni, J.W. Macki, P. Nistri, P. Zecca, Solution Sets of Differential Equations in Abstract Spaces, Pitman Research Notes in Mathematics, Series 342, Longman Ed., New York, 1996.; R. Dragoni, J.W. Macki, P. Nistri, P. Zecca, Solution Sets of Differential Equations in Abstract Spaces, Pitman Research Notes in Mathematics, Series 342, Longman Ed., New York, 1996. · Zbl 0847.34004
[12] Górniewicz, L., Topological structure of solution setscurrent results, Arch. Math. (Brno), 36, 343-382 (2000) · Zbl 1090.54014
[13] Krasnoselskii, M. A.; Krein, S. G., On the theory of ordinary differential equations in Banach spaces, Trudy Sem. Funkc. Anal. Voronez. Univ., 2, 3-23 (1956), (in Russian)
[14] Meehan, M.; O’Regan, D., Existence Theorems for Nonlinear Integral and Integrodifferential Equations (1998), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0932.45010
[15] Nemytskii, V.; Stepanov, V. V., Quality Theory of Differential Equations (1960), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0089.29502
[16] N’Guérékata, G. M., Quelques remarques sur les fonctions asymptotiquemant presque-automorphes, Ann. Sci. Math. Quebec, 7, 185-191 (1987) · Zbl 0524.34064
[17] N’Guérékata, G. M., Almost automorphic functions and applications to abstract evolution equations, Contemp. Math., 252, 71-76 (1999) · Zbl 0943.34048
[18] N’Guérékata, G. M., Almost automorphic solutions of some differential equations in Banach spaces, Internat. J. Math. Math. Sci., 23, 361-365 (2000) · Zbl 0963.34049
[19] N’Guérékata, G. M., Almost Automorphic and Almost Periodic Functions in Abstract Spaces (2001), Kluwer Academic/Plenum Publ.: Kluwer Academic/Plenum Publ. New York, Boston, Dordrecht, London, Moscow · Zbl 1001.43001
[20] N’Guérékata, G. M., Almost automorphy, almost periodicity and stability of motions in Banach spaces, Forum Math., 13, 581-588 (2001) · Zbl 0974.34058
[21] Rao, A. S., On almost automorphic solutions of certain abstract differential equations, Indian J. Math., 33, 2, 179-187 (1991) · Zbl 0795.34054
[22] Shen, W.; Yi, Y., Almost automorphic and almost periodic dynamics in skew-product semiflows, Mem. Amer. Math. Soc., 647, 136 (1998) · Zbl 0913.58051
[23] Veech, W. A., Almost automorphic functions on groups, Amer. J. Math., 87, 719-751 (1965) · Zbl 0137.05803
[24] Zaidman, S., Almost automorphic solutions of some abstract evolution equations, Inst. Lombrado Sci. Lett., 110, 578-588 (1976) · Zbl 0374.34042
[25] Zaidman, S., Topics in abstract differential equations, Nonlinear Anal. TMA, 223, 849-870 (1994) · Zbl 0818.34035
[26] Zaki, M., Almost automorphic solutions of certain abstract differential equations, Ann. Mat. Pura Appl., 101, 91-114 (1974) · Zbl 0304.42028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.