×

On the Apostol-Bernoulli polynomials. (English) Zbl 1073.33001

In an earlier paper [Math. Proc. Camb. Philos. Soc. 129, No. 1, 77–84 (2000; Zbl 0978.11004)], the reviewer gave explicit representations of the general Hurwitz-Lerch zeta function and the Apostol-Bernoulli polynomials \({\mathcal B}_n(x;\lambda)\) [see T. M. Apostol, Pac. J. Math. 1, 161–167 (1951; Zbl 0043.07103)] in finite series of the Hurwitz (or generalized) zeta function \(\zeta(s, a)\).
The present author repeats much of what is already contained in the reviewer’s paper. He also derives some standard properties of the Apostol-Bernoulli polynomials \({\mathcal B}_n(x;\lambda)\). One of these properties extends a result of the reviewer and P. G. Todorov [J. Math. Anal. Appl. 130, No. 2, 509–513 (1988; Zbl 0621.33008)].

MSC:

11B68 Bernoulli and Euler numbers and polynomials
11M35 Hurwitz and Lerch zeta functions
33C05 Classical hypergeometric functions, \({}_2F_1\)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] T.M. Apostol: “On the Lerch Zeta function”, Pacific J. Math., Vol. 1, (1951), pp. 161-167. · Zbl 0043.07103
[2] T.M. Apostol: Introduction to analytic number theory, Springer-Verlag, New York/Heidelberg/Berlin, 1976.
[3] L. Comtet: Advanced Combinatorics: The Art of Finite and Infinite Expansions, Reidel, Dordrecht/Boston, 1974. (Translated from the French by J.W. Nienhuys) · Zbl 0283.05001
[4] H.M. Srivastava: “Some formulae for the Bernoulli and Euler polynomials at rational arguments”, Math. Proc. Cambridge Philos. Soc., Vol. 129, (2000), pp. 77-84. http://dx.doi.org/10.1017/S0305004100004412 · Zbl 0978.11004
[5] H.M. Srivastava and Junesang Choi: Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht/Boston/London, 2001. · Zbl 1014.33001
[6] H.M. Srivastava, P.G. Todorov: “An explicit formula for the generalized Bernoulli polynomials”, J. Math. Anal. Appl., Vol. 130, (1988), pp. 509-513. http://dx.doi.org/10.1016/0022-247X(88)90326-5
[7] H.W. Gould: “Explicit formulas for Bernoulli numbers” Amer. Math. Monthly, Vol. 79, (1972), pp. 44-51. http://dx.doi.org/10.2307/2978125 · Zbl 0227.10010
[8] Qiu-Ming Luo: “The Bernoulli Polynomials Involving the Gaussian Hypergeometric Functions”, [submitted]. · Zbl 1189.11011
[9] D. Cvijovic and J. Klinowski: “New formula for The Bernoulli and Euler polynomials at rational arguments”, Proc. Amer. Math. Soc., Vol. 123, (1995), pp. 1527-1535. http://dx.doi.org/10.2307/2161144 · Zbl 0827.11012
[10] M. Abramowitz and I.A. Stegun (Eds): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 4th printing, Washington, 1965.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.