A note on Hopf bifurcation in Chen’s system. (English) Zbl 1074.34045

Chen’s system \(\dot x= a(y- x)\), \(\dot y= cx- xz- y\), \(\dot z= xy- bz\), is considered under the conditions \(b= \frac{17}{8}c\), \(a= \frac 34c\). The Andronov-Hopf bifurcations of the equilibria are calculated and their character (supercriticality, resp subcriticality) is determined.


34C23 Bifurcation theory for ordinary differential equations
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
Full Text: DOI


[1] DOI: 10.1016/S0375-9601(00)00777-5 · Zbl 0972.37019 · doi:10.1016/S0375-9601(00)00777-5
[2] DOI: 10.1142/S0218127402005467 · Zbl 1043.37023 · doi:10.1142/S0218127402005467
[3] DOI: 10.1142/S0218127499001024 · Zbl 0962.37013 · doi:10.1142/S0218127499001024
[4] Kuznetsov Y. A., Elements of Applied Bifurcation Theory (1998) · Zbl 0914.58025
[5] DOI: 10.1142/S0218127402005819 · Zbl 1047.34044 · doi:10.1142/S0218127402005819
[6] DOI: 10.1007/978-1-4612-5767-7 · doi:10.1007/978-1-4612-5767-7
[7] Ueta T., Int. J. Bifurcation and Chaos 10 pp 1917–
[8] Wang X., Contr. Th. Appl. 16 pp 779–
[9] Yu X., Int. J. Bifurcation and Chaos 10 pp 1987–
[10] DOI: 10.1142/S0218127402005224 · doi:10.1142/S0218127402005224
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.