×

Singly generated planar algebras of small dimension. (English) Zbl 1075.46053

Summary: Planar algebras have been introduced by the second author as a tool to study subfactors. A planar algebra encodes the standard invariant of a subfactor in such a way that combinatorial and algebraic studies are handled in a graphical method.
The authors study simplest subfactors from the viewpoint of planar algebras. That is, they study subfactors \(N\subset M\) such that the corresponding planar algebra is generated by a single element in \(N'\cap M_1\), \(\dim (N'\cap M_1)=3\), and \(\dim (N'\cap M_2)\leq 12\). In the course of this study, they obtain a certain sufficient condition for existence of a nontrivial intermediate subfactor. Using this, they reach the main classification result which says that if a planar algebra satisfies the above three conditions then it is a Fuss-Catalan algebra studied previously by the authors in [Invent. Math. 128, No. 1, 89–157 (1997; Zbl 0891.46035)], except for the easy case of a subfactor of index 3. Several graphical techniques are introduced for this purpose.
[For part II see Adv. Math. 175, No. 2, 297–318 (2003; Zbl 1041.46048).]

MSC:

46L37 Subfactors and their classification
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] J. Birman and H. Wenzl, Braids, link polynomials and a new algebra , Trans. Amer. Math. Soc. 313 (1989), 249–273. · Zbl 0684.57004 · doi:10.2307/2001074
[2] D. Bisch, A note on intermediate subfactors , Pacific J. Math. 163 (1994), 201–216. · Zbl 0814.46053 · doi:10.2140/pjm.1994.163.201
[3] –. –. –. –., “Bimodules, higher relative commutants and the fusion algebra associated to a subfactor” in Operator Algebras and Their Applications (Waterloo, Ontario, 1994/1995) , Fields Inst. Commun. 13 , Amer. Math. Soc., Providence, 1997, 13–63. · Zbl 0894.46046
[4] D. Bisch and U. Haagerup, Composition of subfactors: New examples of infinite depth subfactors , Ann. Sci. École Norm. Sup. (4) 29 (1996), 329–383. · Zbl 0853.46062
[5] D. Bisch and V. Jones, Algebras associated to intermediate subfactors , Invent. Math. 128 (1997), 89–157. · Zbl 0891.46035 · doi:10.1007/s002220050137
[6] ——–, Planar algebras, II , in preparation.
[7] D. Evans and Y. Kawahigashi, Quantum Symmetries on Operator Algebras , Oxford Math. Monogr., Oxford Univ. Press, New York, 1998. · Zbl 0924.46054
[8] K. Fredenhagen, K.-H. Rehren, and B. Schroer, Superselection sectors with braid group statistics and exchange algebras, I: General theory , Comm. Math. Phys. 125 (1989), 201–226. · Zbl 0682.46051 · doi:10.1007/BF01217906
[9] S. Gnerre, Free composition of paragroups , Ph.D. thesis, University of California at Berkeley, 1997. · Zbl 0985.46038
[10] F. Goodman, P. de la Harpe, and V. Jones, Coxeter Graphs and Towers of Algebras , Math. Sci. Res. Inst. Publ. 14 , Springer-Verlag, New York, 1989. · Zbl 0698.46050
[11] U. Haagerup, “Principal graphs of subfactors in the index range \(4 < [M:N] < 3 + \sqrt2\)” in Subfactors (Kyuzeso, 1993) , World Scientific, River Edge, N.J., 1994, 1–38. · Zbl 0933.46058
[12] M. Izumi, Application of fusion rules to classification of subfactors , Publ. Res. Inst. Math. Sci. 27 (1991), 953–994. · Zbl 0765.46048 · doi:10.2977/prims/1195169007
[13] V. Jones, Index for subfactors , Invent. Math. 72 (1983), 1–25. · Zbl 0508.46040 · doi:10.1007/BF01389127
[14] ——–, Planar algebras, I , preprint, 1998.
[15] V. Jones and V. Sunder, Introduction to Subfactors , London Math. Soc. Lecture Note Ser. 234 , Cambridge Univ. Press, Cambridge, 1997. · Zbl 0903.46062
[16] Z. Landau, Ph.D. thesis, University of California at Berkeley, 1998.
[17] R. Longo, Index of subfactors and statistics of quantum fields, I , Comm. Math. Phys. 126 (1989), 217–247. · Zbl 0682.46045 · doi:10.1007/BF02125124
[18] –. –. –. –., Index of subfactors and statistics of quantum fields, II: Correspondences, braid group statistics and Jones polynomial , Comm. Math. Phys. 130 (1990), 285–309. · Zbl 0705.46038 · doi:10.1007/BF02473354
[19] J. Murakami, The Kauffman polynomial of links and representation theory , Osaka J. Math. 24 (1987), 745–758. · Zbl 0666.57006
[20] A. Ocneanu, “Quantized groups, string algebras and Galois theory for algebras” in Operator Algebras and Applications, Vol. 2 , London Math. Soc. Lecture Note Ser. 136 , Cambridge Univ. Press, Cambridge, 1988, 119–172. · Zbl 0696.46048
[21] ——–, Quantum symmetry, differential geometry of finite graphs and classification of subfactors , University of Tokyo Seminary Notes (notes recorded by Y. Kawahigashi), no. 45, 1991.
[22] M. Pimsner and S. Popa, Entropy and index for subfactors , Ann. Sci. École Norm. Sup. (4) 19 (1986), 57–106. · Zbl 0646.46057
[23] –. –. –. –., Iterating the basic construction , Trans. Amer. Math. Soc. 310 (1988), 127–133. · Zbl 0706.46047 · doi:10.2307/2001113
[24] S. Popa, Classification of subfactors: The reduction to commuting squares , Invent. Math. 101 (1990), 19–43. · Zbl 0757.46054 · doi:10.1007/BF01231494
[25] –. –. –. –., Classification of amenable subfactors of type II , Acta Math. 172 (1994), 163–255. · Zbl 0853.46059 · doi:10.1007/BF02392646
[26] –. –. –. –., An axiomatizaton of the lattice of higher relative commutants of a subfactor , Invent. Math. 120 (1995), 427–445. · Zbl 0831.46069 · doi:10.1007/BF01241137
[27] ——–, Classification of Subfactors and Their Endomorphisms , CBMS Regional Conf. Ser. in Math. 86 , Amer. Math. Soc., Providence, 1995. · Zbl 0865.46044
[28] J. K. Schou, Commuting squares and index for subfactors , Ph.D. thesis, Odense Universitet, 1991.
[29] A. Wassermann, Operator algebras and conformal field theory, III: Fusion of positive energy representations of LSU (N) using bounded operators , Invent. Math. 133 (1998), 467–538. · Zbl 0944.46059 · doi:10.1007/s002220050253
[30] H. Wenzl, Hecke algebras of type \(A_n\) and subfactors , Invent. Math. 92 (1988), 349–383. · Zbl 0663.46055 · doi:10.1007/BF01404457
[31] –. –. –. –., Quantum groups and subfactors of type \(B\), \(C\), and \(D\) , Comm. Math. Phys. 133 (1990), 383–432. · Zbl 0744.17021 · doi:10.1007/BF02097374
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.