Gutt, Simone; Rawnsley, John Traces for star products on symplectic manifolds. (English) Zbl 1075.53097 J. Geom. Phys. 42, No. 1-2, 12-18 (2002). Let \(\ast\) be a differential star product on a symplectic manifold \((M, \omega)\). A trace is a (non trivial) \({\mathbb C}[[\nu]]\)-linear map \(\tau : C^{\infty}_c(M)[[\nu ]] \rightarrow {\mathbb C}[\nu ^{-1},\nu]]\) satisfying \(\tau (f\ast g)=\tau (g\ast f)\). It is known that such a trace exists and is unique up to multiplication by an element of \({\mathbb C}[\nu ^{-1},\nu]]\) [B. V. Fedosov, Sov. Phys., Dokl. 31, 877–878 (1986); translation from Dokl. Akad. Nauk SSSR 291, 82–86 (1986; Zbl 0635.58019), Deformation quantization and index theory, Mathematical Topics. 9. Berlin: Akademie Verlag (1996; Zbl 0867.58061), R. Nest and B. Tsygan, Commun. Math. Phys. 172, No. 2, 223–262 (1995; Zbl 0887.58050)]. The authors give a direct elementary proof of this result by using some ideas and techniques from their own papers [J. Geom. Phys. 29, No. 4, 347–392 (1999; Zbl 1024.53057)] and A. V. Karabegov [Lett. Math. Phys. 45, No. 3, 217–228 (1998; Zbl 0943.53052)]. Reviewer: Benjamin Cahen (Metz) Cited in 1 ReviewCited in 9 Documents MSC: 53D55 Deformation quantization, star products Keywords:deformation quantization; star products; symplectic manifolds; traces. Citations:Zbl 0635.58019; Zbl 0887.58050; Zbl 0867.58061; Zbl 0943.53052; Zbl 1024.53057 PDF BibTeX XML Cite \textit{S. Gutt} and \textit{J. Rawnsley}, J. Geom. Phys. 42, No. 1--2, 12--18 (2002; Zbl 1075.53097) Full Text: DOI arXiv OpenURL References: [1] Bordemann, M.; Neumaier, N.; Waldmann, S., Homogeneous Fedosov star products on cotangent bundles. II. GNS representations, the WKB expansion, traces, and applications, J. geom. phys., 29, 199-234, (1999) · Zbl 0989.53060 [2] Bordemann, M.; Romer, H.; Waldmann, S., A remark on formal KMS states in deformation quantization, Lett. math. phys., 45, 49-61, (1998) · Zbl 0951.53057 [3] Connes, A.; Flato, M.; Sternheimer, D., Closed star products and cyclic cohomology, Lett. math. phys., 24, 1-12, (1992) · Zbl 0767.55005 [4] Fedosov, B.V., Quantization and the index, Dokl. akad. nauk. SSSR, 291, 82-86, (1986) · Zbl 0635.58019 [5] B.V. Fedosov, Deformation quantization and index theory, Mathematical Topics, Vol. 9, Akademie Verlag, Berlin, 1996. · Zbl 0867.58061 [6] G. Felder, B. Shoikhet, Deformation quantization with traces. math. QA/0002057. · Zbl 0983.53065 [7] I.M. Gelfand, G.E. Shilov, Generalized Functions, Academic Press, New York, 1964. [8] Guillemin, V., Star products on compact pre-quantizable symplectic manifolds, Lett. math. phys., 35, 85-89, (1995) · Zbl 0842.58041 [9] Gutt, S.; Rawnsley, J., Equivalence of star products on a symplectic manifold, J. geom. phys., 29, 347-392, (1999) · Zbl 1024.53057 [10] Karabegov, A., On the canonical normalization of a trace density of deformation quantization, Lett. math. phys., 45, 217-228, (1998) · Zbl 0943.53052 [11] Nest, R.; Tsygan, B., Algebraic index theorem, Commun. math. phys., 172, 223-262, (1995) · Zbl 0887.58050 [12] Omori, H.; Maeda, Y.; Yoshioka, A., Existence of a closed star product, Lett. math. phys., 26, 285-294, (1992) · Zbl 0771.58017 [13] Pflaum, M.J., A deformation-theoretical approach to Weyl quantization on Riemannian manifolds, Lett. math. phys., 45, 277-294, (1998) · Zbl 0995.53057 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.