GP-injective rings need not be P-injective. (English) Zbl 1076.16003

Summary: A ring \(R\) is called left P-injective if for every \(a\in R\), \(aR=r(l(a))\) where \(l(\cdot)\) and \(r(\cdot)\) denote left and right annihilators, respectively. The ring \(R\) is called left GP-injective if for any \(0\neq a\in R\), there exists \(n>0\) such that \(a^n\neq 0\) and \(a^nR=r(l(a^n))\). As a response to an open question on GP-injective rings, an example of a left GP-injective ring which is not left P-injective is given. It is also proved here that a ring \(R\) is left FP-injective if and only if every matrix ring \(\mathbb{M}_n(R)\) is left GP-injective.


16D50 Injective modules, self-injective associative rings
Full Text: DOI


[1] Camillo V., Portugal. Math. 46 pp 33– (1989)
[2] Chen J., J. Math. Res. Exp. 3 pp 395– (1992)
[3] DOI: 10.1080/00927879908826552 · Zbl 0923.16001
[4] Chen J., Algebra Colloq. 8 pp 267– (2001)
[5] Koike K., Math. J. Okayama Univ. 37 pp 99– (1995)
[6] DOI: 10.1080/00927879508825543 · Zbl 0840.16006
[7] DOI: 10.1080/00927879508825532 · Zbl 0839.16005
[8] DOI: 10.1006/jabr.1995.1117 · Zbl 0839.16004
[9] DOI: 10.1006/jabr.1998.7403 · Zbl 0923.16002
[10] DOI: 10.1017/S0017089500031657 · Zbl 0847.16005
[11] DOI: 10.1007/BF01558598 · Zbl 0084.26505
[12] DOI: 10.1080/00927877508822043 · Zbl 0298.16015
[13] Xue W., Riv. Mat. Univ. Parma. 1 pp 31– (1998)
[14] Yue Chi Ming R., J. Math. Kyoto Univ. 27 pp 439– (1987)
[15] DOI: 10.1017/S1446788700009009 · Zbl 1020.16003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.