×

Finite propagation speed for the Camassa-Holm equation. (English) Zbl 1076.35109

Summary: We prove that any classical solution of the Camassa–Holm equation will have compact support if its initial data has this property.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1088/0266-5611/15/1/001 · Zbl 0923.35154 · doi:10.1088/0266-5611/15/1/001
[2] DOI: 10.1103/PhysRevLett.71.1661 · Zbl 0972.35521 · doi:10.1103/PhysRevLett.71.1661
[3] DOI: 10.1006/jdeq.1997.3333 · Zbl 0889.35022 · doi:10.1006/jdeq.1997.3333
[4] DOI: 10.1006/jfan.1997.3231 · Zbl 0907.35009 · doi:10.1006/jfan.1997.3231
[5] DOI: 10.5802/aif.1757 · doi:10.5802/aif.1757
[6] DOI: 10.1016/S0893-9659(01)00045-3 · Zbl 0985.35069 · doi:10.1016/S0893-9659(01)00045-3
[7] DOI: 10.1098/rspa.2000.0701 · Zbl 0999.35065 · doi:10.1098/rspa.2000.0701
[8] DOI: 10.1007/BF02392586 · Zbl 0923.76025 · doi:10.1007/BF02392586
[9] Constantin A., Ann. Sci. Ec. Normale Super. 26 pp 303– (1998)
[10] DOI: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5 · Zbl 0934.35153 · doi:10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5
[11] DOI: 10.1088/0305-4470/35/32/201 · Zbl 1039.37068 · doi:10.1088/0305-4470/35/32/201
[12] DOI: 10.1007/s00014-003-0785-6 · Zbl 1037.37032 · doi:10.1007/s00014-003-0785-6
[13] DOI: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D · Zbl 0940.35177 · doi:10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D
[14] DOI: 10.1007/s002200050801 · Zbl 1002.35101 · doi:10.1007/s002200050801
[15] DOI: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L · Zbl 1049.35149 · doi:10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
[16] DOI: 10.1007/BF01170373 · Zbl 0910.73036 · doi:10.1007/BF01170373
[17] DOI: 10.1016/0167-2789(95)00133-O · Zbl 1194.35363 · doi:10.1016/0167-2789(95)00133-O
[18] DOI: 10.1016/0167-2789(81)90004-X · Zbl 1194.37114 · doi:10.1016/0167-2789(81)90004-X
[19] DOI: 10.1103/PhysRevLett.77.2347 · Zbl 0982.76511 · doi:10.1103/PhysRevLett.77.2347
[20] Friedlander G., Introduction to the Theory of Distributions (1998) · Zbl 0971.46024
[21] DOI: 10.1016/0167-2789(96)00048-6 · Zbl 0900.35345 · doi:10.1016/0167-2789(96)00048-6
[22] DOI: 10.1017/S0022112001007224 · Zbl 1037.76006 · doi:10.1017/S0022112001007224
[23] DOI: 10.2991/jnmp.2002.9.4.2 · Zbl 1014.35082 · doi:10.2991/jnmp.2002.9.4.2
[24] DOI: 10.1016/S0393-0440(97)00010-7 · Zbl 0901.58022 · doi:10.1016/S0393-0440(97)00010-7
[25] Strichartz R., A Guide to Distribution Theory and Fourier Transforms (1994) · Zbl 0854.46035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.