×

Species coexistence and periodicity in host-host-pathogen models. (English) Zbl 1077.92044

Summary: Models for the transmission of an infectious disease in one and two host populations with and without self-regulation are analyzed. Many unusual behaviors such as multiple positive equilibria and periodic solutions occur in previous models that use the mass-action (density-dependent) incidence. In contrast, the models formulated using the frequency-dependent (standard) incidence have the behavior of a classic endemic model, since below the threshold the disease dies out, and above the threshold the disease persists and the infectious fractions approach an endemic equilibrium. The results given here reinforce previous examples in which there are major differences in behavior between models using mass-action and frequency-dependent incidences.

MSC:

92D30 Epidemiology
37N25 Dynamical systems in biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, Nature, 289, 765 (1981)
[2] Anderson, J. Animal Ecology, 47, 219 (1978)
[3] Anderson, Nature, 280, 361 (1979)
[4] Anderson, R. M., May, R. M. (Eds.): Population Biology of Infectious Diseases. Springer-Verlag, Berlin, Heidelberg, New York, 1982
[5] Anderson, Trans. R. Soc. Lond. B, 314, 533 (1986)
[6] Anderson, R. M., May, R. M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford, 1991
[7] Becker, Math. Biosci., 54, 137 (1981) · Zbl 0455.92017 · doi:10.1016/0025-5564(81)90081-X
[8] Begon, Epidemiol. Infect., 129, 147 (2002) · doi:10.1017/S0950268802007148
[9] Begon, M., Bowers, R. G.: Beyond host-pathogen dynamics. In: Grenfell, B. T., Dobson, A. P. (Eds.), Ecology of Disease in Natural Populations, Cambridge University Press, Cambridge, 1995, pp. 479-509 · Zbl 0839.92024
[10] Begon, Am. Nat., 139, 1131 (1992) · doi:10.1086/285379
[11] Begon, Proc. R. Soc. Lond. B, 266, 1939 (1999)
[12] Begon, J. Animal Ecol., 72, 343 (2003)
[13] Bonsall, M. B.; Hassell, M. P., Apparent competition structures ecological assemblages, Nature, 388, 371-373 (1997)
[14] Bouma, Prev. Vet. Med., 23, 163 (1995) · doi:10.1016/0167-5877(94)00442-L
[15] De Jong, M. C. M., Diekmann, O., Heesterbeek, J. A. P.: How does transmission depend on population size? In: Mollison, D. (Ed.), Epidemic Models: Their Structure and Relation to Data, Cambridge University Press, Cambridge, 1995, pp. 84-94 · Zbl 0850.92042
[16] Diekmann, J. Biol. Syst., 3, 519 (1995)
[17] Diekmann, O., Heesterbeek, J. A. P.: Mathematical Epidemiology of Infectious Diseases. John Wiley and Sons, Chichester, England, 2000 · Zbl 0997.92505
[18] Diekmann, J. Math. Biol., 28, 365 (1990) · Zbl 0726.92018 · doi:10.1007/BF00178324
[19] Dietz, K.: Overall population patterns in the transmission cycle of infectious disease agents. In: Population Biology of Infectious Diseases, Anderson, R. M., May, R. M. (eds.), Springer-Verlag, Berlin, Heidelberg, New York, 1982, pp. 87-102
[20] Dobson, Ecology, 77, 1026 (1996)
[21] Fromont, Theor. Pop. Biol., 52, 60 (1997) · Zbl 0889.92016 · doi:10.1006/tpbi.1997.1320
[22] Gao, J. Math. Biol., 30, 717 (1992) · Zbl 0774.92018 · doi:10.1007/BF00173265
[23] Gao, Math. Biosci., 128, 157 (1995) · Zbl 0834.92021 · doi:10.1016/0025-5564(94)00071-7
[24] Gao, L. Q., Mena-Lorca, J., Hethcote, H. W.: Variations on a theme of SEI endemic models. In: Martelli, M., Cooke, K., Cumberbatch, E., Tang, B., Thieme, H. (eds.), Differential Equations and Applications to Biology and to Industry, World Scientific Publishing, Singapore, 1996, pp. 191-207 · Zbl 0920.92026
[25] Greenman, J. Theor. Biol., 185, 345 (1997) · doi:10.1006/jtbi.1996.0309
[26] Greenwood, M., Bradford Hill, A. T., Topley, W. W. C., Wilson, J.: Experimental Epidemiology. MRC Special Report Series 209, 1936
[27] Grenfell, B. T., Dobson, A. P. (Eds.): Ecology of Disease in Natural Populations. Cambridge University Press, Cambridge, 1995 · Zbl 0829.00038
[28] Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York, 1983 · Zbl 0515.34001
[29] Hale, J. K.: Ordinary Differential Equations. John Wiley, New York, 1969 · Zbl 0186.40901
[30] Heesterbeek, J. Math. Biol., 31, 529 (1993) · Zbl 0770.92021 · doi:10.1007/BF00173891
[31] Hethcote, Mathematical Biosciences, 28, 335 (1976) · Zbl 0326.92017 · doi:10.1016/0025-5564(76)90132-2
[32] Hethcote, Theor. Popul. Biol., 14, 338 (1978) · Zbl 0392.92009
[33] Hethcote, H. W.: A thousand and one epidemic models. In: Levin, S. A. (Ed.), Frontiers in Theoretical Biology, Volume 100 of Lecture Notes in Biomathematics, Springer-Verlag, Berlin, 1994, pp. 504-515 · Zbl 0819.92020
[34] Hethcote, H. W.: Modeling heterogenous mixing in infectious disease models. In: Isham, V., Medley, G. (Eds.), Models for Infectious Human Diseases, Cambridge University Press, Cambridge, 1996, pp. 215-238 · Zbl 0884.92025
[35] Hethcote, SIAM Review, 42, 599 (2000) · Zbl 0993.92033 · doi:10.1137/S0036144500371907
[36] Hethcote, H. W., Levin, S. A.: Periodicity in epidemiological models. In: Gross, L., Hallam, T. G., Levin, S. A. (eds.), Applied Mathematical Ecology, Springer-Verlag, Berlin, 1989, pp. 193-211
[37] Hethcote, Math. Biosci., 84, 85 (1987) · Zbl 0619.92006 · doi:10.1016/0025-5564(87)90044-7
[38] Hethcote, Theor. Pop. Biol., 66, 259 (2004) · doi:10.1016/j.tpb.2004.06.010
[39] Hirsch, J. Dynam. Diff. Equ., 13, 107 (2001) · Zbl 1129.37306
[40] Holt, Theor. Popul. Biol., 12, 197 (1977) · doi:10.1016/0040-5809(77)90042-9
[41] Holt, Am. Nat., 126, 196 (1985) · doi:10.1086/284409
[42] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press, Cambridge, 1990 · Zbl 0704.15002
[43] Lloyd-Smith, Proc. R. Soc. Lond. B, 271, 625 (2004) · doi:10.1098/rspb.2003.2632
[44] May, J. Animal Ecology, 47, 249 (1978)
[45] McCallum, Evol., 16, 295 (2001)
[46] Mena-Lorca, J. Math. Biol., 30, 693 (1992) · Zbl 0748.92012
[47] Roberts, J. Anim. Ecol., 65, 451 (1996)
[48] Shen, Acta Mathematica Applicatae Sinica, 11, 79 (1)
[49] Smith, H. L.: Monotone Dynamical Systems. American Mathematical Society, Providence, Rhode Island, 1995 · Zbl 0821.34003
[50] Strogatz, S. H.: Nonlinear Dynamics and Chaos. Addison-Wesley, Reading, Massachusetts, 1994
[51] Thieme, J. Math. Biol., 30, 755 (1992) · Zbl 0761.34039 · doi:10.1007/BF00173267
[52] Turner, Proc. R. Soc. Lond. B, 270, 105 (2003) · doi:10.1098/rspb.2002.2213
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.