Hoffman, David (ed.) Global theory of minimal surfaces. Proceedings of the Clay Mathematics Institute 2001 summer school, Berkeley, CA, USA, June 25–July 27, 2001. (English) Zbl 1078.53002 Clay Mathematics Proceedings 2. Providence, RI: American Mathematical Society (AMS). Cambridge, MA: Clay Mathematics Institute (ISBN 0-8218-3587-4/pbk). xi, 800 p. (2005). Show indexed articles as search result. The articles of this volume will be reviewed individually.Indexed articles:Morgan, Frank; Ritoré, Manuel, Geometric measure theory and the proof of the double bubble conjecture, 1-18 [Zbl 1125.49033]Weber, Matthias, Classical minimal surfaces in Euclidean space by examples: geometric and computational aspects of the Weierstrass representation, 19-63 [Zbl 1100.53015]Polthier, Konrad, Computational aspects of discrete minimal surfaces, 65-111 [Zbl 1100.53014]Schoen, Richard, Mean curvature in Riemannian geometry and general relativity, 113-136 [Zbl 1101.53038]Karcher, Hermann, Introduction to conjugate plateau constructions, 137-161 [Zbl 1130.53010]Pérez, Joaquín; López, Francisco, Parabolicity and minimal surfaces, 163-174 [Zbl 1100.53013]Ros, Antonio, The isoperimetric problem, 175-209 [Zbl 1125.49034]Wolf, Michael, Flat structures, Teichmüller theory and handle addition for minimal surfaces, 211-241 [Zbl 1109.53010]Weber, Matthias; Hoffman, D.; Wolf, M., The genus-one helicoid as a limit of screw-motion invariant helicoids with handles, 243-258 [Zbl 1102.53008]Hoffman, David, Computing minimal surfaces, 259-282 [Zbl 1111.53008]Spruck, Joel, Geometric aspects of the theory of fully nonlinear elliptic equations, 283-309 [Zbl 1151.53345]Karcher, Hermann, Hyperbolic surfaces of constant mean curvature one with compact fundamental domains, 311-323 [Zbl 1102.53045]Choe, Jaigyoung, Isoperimetric inequalities of minimal submanifolds, 325-369 [Zbl 1101.53035]Martín, Francisco, Complete nonorientable minimal surfaces in \(\mathbb R^3\), 371-380 [Zbl 1106.53006]López, Francisco J., Some Picard-type results for properly immersed minimal surfaces \(\mathbb R^3\), 381-394 [Zbl 1111.53009]Ritoré, Manuel, Optimal isoperimetric inequalities for three-dimensional Cartan-Hadamard manifolds, 395-404 [Zbl 1125.49032]Colding, Tobias H.; Minicozzi, William P. II, Embedded minimal disks, 405-438 [Zbl 1109.53008]Traizet, Martin, Construction of minimal surfaces by gluing Weierstrass representations, 439-452 [Zbl 1103.53004]Meeks, William H. III, Global problems in classical minimal surface theory., 453-469 [Zbl 1100.53012]Meeks, William H. III; Rosenberg, Harold, Minimal surfaces of finite topology, 471-488 [Zbl 1115.53007]Kapouleas, Nikolaos, Constructions of minimal surfaces by gluing minimal immersions, 489-524 [Zbl 1100.53010]Mazzeo, Rafe; Pacard, Frank; Pollack, Daniel, The conformal theory of Alexandrov embedded constant mean curvature surfaces in \(\mathbb R^3\), 525-559 [Zbl 1101.53006]Rossman, Wayne; Umehara, Masaaki; Yamada, Kotaro, Constructing mean curvature \(0\) surfaces in \(H^3\) with irregular ends, 561-584 [Zbl 1100.53051]Kusner, Rob, Conformal structures and necksizes of embedded constant mean curvature surfaces, 585-596 [Zbl 1103.53030]Perez, Joaquín; Meeks, William H. III; Ros, Antonio, Uniqueness of the Riemann minimal surfaces, 597-610 [Zbl 1115.53009]Yi, Fang, The mathematical protein folding problem, 611-622 [Zbl 1095.92044]Tenenblat, Keti, Minimal and CMC surfaces obtained by Ribaucour transformations, 623-634 [Zbl 1106.53007]Sa Earp, Ricardo; Toubiana, Eric, Meromorphic data for surfaces of mean curvature one in hyperbolic space. II, 635-654 [Zbl 1111.53048]Schoen, Richard, Special Lagrangian submanifolds, 655-666 [Zbl 1102.53056]Joyce, Dominic, Lectures on special Lagrangian geometry, 667-695 [Zbl 1102.53037]Wolfson, Jon, Variational problems in Lagrangian geometry: \(\mathbb Z_2\)-currents, 697-704 [Zbl 1104.53061]Hass, Joel, Minimal surfaces and the topology of three-manifolds, 705-724 [Zbl 1100.57021]Rubinstein, J. Hyam, Minimal surfaces in geometric 3-manifolds, 725-746 [Zbl 1119.53042]Große-Brauckmann, Karsten, Cousins of constant mean curvature surfaces, 747-767 [Zbl 1110.53041]Topping, Peter, An approach to the Willmore conjecture, 769-772 [Zbl 1110.53004]Mese, Chikako, Minimal surfaces and harmonic maps into singular geometry, 773-782 [Zbl 1102.53006]Rubinstein, J. Hyam, Shortest networks in 2 and 3 dimensions, 783-790 [Zbl 1101.05026] Cited in 1 Document MSC: 53-06 Proceedings, conferences, collections, etc. pertaining to differential geometry 00B25 Proceedings of conferences of miscellaneous specific interest 53A20 Projective differential geometry × Cite Format Result Cite Review PDF