Wei, J. J.; Velarde, M. G. Bifurcation analysis and existence of periodic solutions in a simple neural network with delays. (English) Zbl 1080.34064 Chaos 14, No. 3, 940-953 (2004). Summary: Results are provided about the stability and bifurcation of periodic solutions for a (neural) network with n elements where delays between adjacent units and external inputs are included. The particular cases \(n = 2\) and \(n = 3\) are discussed in detail, to explicitly illustrate the role of the delays in the corresponding bifurcation sets and the stability properties, like a Hopf bifurcation, a pitchfork bifurcation, and a Bogdanov-Takens bifurcation. Cited in 32 Documents MSC: 34K60 Qualitative investigation and simulation of models involving functional-differential equations 34K13 Periodic solutions to functional-differential equations 34K18 Bifurcation theory of functional-differential equations 34K20 Stability theory of functional-differential equations 37N25 Dynamical systems in biology 92B20 Neural networks for/in biological studies, artificial life and related topics PDFBibTeX XMLCite \textit{J. J. Wei} and \textit{M. G. Velarde}, Chaos 14, No. 3, 940--953 (2004; Zbl 1080.34064) Full Text: DOI References: [1] DOI: 10.1073/pnas.81.10.3088 · Zbl 1371.92015 · doi:10.1073/pnas.81.10.3088 [2] DOI: 10.1103/PhysRevA.39.347 · doi:10.1103/PhysRevA.39.347 [3] DOI: 10.1109/72.298231 · doi:10.1109/72.298231 [4] Campbell S. A., Fields Institute Commun. Series 21 pp 65– (1999) [5] DOI: 10.1016/0167-2789(94)90043-4 · Zbl 0815.92001 · doi:10.1016/0167-2789(94)90043-4 [6] DOI: 10.1137/S0036139997321219 · Zbl 0917.34036 · doi:10.1137/S0036139997321219 [7] DOI: 10.1016/S0167-2789(00)00216-5 · Zbl 1007.34072 · doi:10.1016/S0167-2789(00)00216-5 [8] DOI: 10.1016/S0167-2789(01)00344-X · Zbl 0984.92502 · doi:10.1016/S0167-2789(01)00344-X [9] DOI: 10.1016/S0167-2789(96)00215-1 · Zbl 0887.34069 · doi:10.1016/S0167-2789(96)00215-1 [10] DOI: 10.1142/S0218127499001103 · Zbl 1192.37115 · doi:10.1142/S0218127499001103 [11] DOI: 10.1016/0167-2789(87)90021-2 · doi:10.1016/0167-2789(87)90021-2 [12] DOI: 10.1016/0167-2789(95)00203-0 · Zbl 0883.68108 · doi:10.1016/0167-2789(95)00203-0 [13] DOI: 10.1016/S0307-904X(97)00080-2 · Zbl 0893.68126 · doi:10.1016/S0307-904X(97)00080-2 [14] DOI: 10.1006/jmaa.2000.7410 · Zbl 0998.34058 · doi:10.1006/jmaa.2000.7410 [15] Chen Y., Diff. Integral Eq. 14 pp 1181– (2001) [16] DOI: 10.1016/S0167-2789(99)00111-6 · Zbl 0942.34062 · doi:10.1016/S0167-2789(99)00111-6 [17] DOI: 10.1016/S0167-2789(99)00009-3 · Zbl 1066.34511 · doi:10.1016/S0167-2789(99)00009-3 [18] DOI: 10.1016/S0167-2789(01)00337-2 · Zbl 0984.92505 · doi:10.1016/S0167-2789(01)00337-2 [19] DOI: 10.1016/S0167-2789(00)00197-4 · doi:10.1016/S0167-2789(00)00197-4 [20] Wei J., Nonlinear Phenomena in Complex Systems 5 pp 407– (2002) [21] DOI: 10.1006/jdeq.2000.3881 · Zbl 0961.92002 · doi:10.1006/jdeq.2000.3881 [22] DOI: 10.1137/S0036139998344015 · Zbl 0992.92013 · doi:10.1137/S0036139998344015 [23] DOI: 10.1103/PhysRevE.60.3244 · doi:10.1103/PhysRevE.60.3244 [24] DOI: 10.1016/S0375-9601(00)00136-5 · Zbl 1098.82615 · doi:10.1016/S0375-9601(00)00136-5 [25] Chen A., Appl. Math. Comput. 137 pp 177– (2003) · Zbl 1034.34087 · doi:10.1016/S0096-3003(02)00095-4 [26] DOI: 10.1016/S0362-546X(01)00113-4 · Zbl 1004.34065 · doi:10.1016/S0362-546X(01)00113-4 [27] Ruan S., Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 10 pp 863– (2003) [28] DOI: 10.1093/imammb/18.1.41 · doi:10.1093/imammb/18.1.41 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.