×

Elementary fixed points of the BRW smoothing transforms with infinite number of summands. (English) Zbl 1081.60017

The branching random walk smoothing transform \(\mathbb{T}\) is defined as \[ \mathbb{T}: \text{distr}(U_1)\to\text{distr}\left(\sum^L_{i=1}X_iU_i\right), \] where given realizations \(\{X_i\}^L_{i=1}\) of a point process, \(U_1, U_2,\dots\), are conditionally independent identically distributed random variables, and \(0\leq\text{Prob} \{L=\infty\}\leq 1\). Necessary conditions for the existence of any nonnegative fixed points of \(\mathbb{T}\) are obtained. Moreover, there is a uniqueness result which proves that if an elementary fixed point exists, it is unique up to the scale. The notation of an elementary fixed point is introduced by some restrictions on its Laplace-Stieltjes transform. The tail behaviour of some fixed points with finite mean is studied.

MSC:

60E10 Characteristic functions; other transforms
47H10 Fixed-point theorems
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60E07 Infinitely divisible distributions; stable distributions
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Athreya, K. B., On the supercritical one-dimensional age dependent branching processes, Ann. Math. Statist, 40, 743-763 (1969) · Zbl 0175.46603
[2] Baringhaus, L.; Grübel, R., On a class of characterization problems for random convex combinations, Ann. Inst. Statist. Math, 49, 555-567 (1997) · Zbl 0936.60012
[3] J. Bertoin, A.V. Gnedin, Asymptotic laws for nonconservative self-similar fragmentations, Preprint, available online at http://www.arxiv.org/abs/math.PR/0402227; J. Bertoin, A.V. Gnedin, Asymptotic laws for nonconservative self-similar fragmentations, Preprint, available online at http://www.arxiv.org/abs/math.PR/0402227 · Zbl 1064.60075
[4] Biggins, J. D., Martingale convergence in the branching random walk, J. Appl. Probab, 14, 25-37 (1977) · Zbl 0356.60053
[5] J.D. Biggins, A.E. Kyprianou, Branching random walk: Seneta-Heyde norming, in: B. Chauvin, S. Cohen, A. Rouault (Eds.), Trees: Proceedings of a Workshop in Versailles, June 14-16, 1995, Birkhauser, Basel, 1996, pp. 31-50.; J.D. Biggins, A.E. Kyprianou, Branching random walk: Seneta-Heyde norming, in: B. Chauvin, S. Cohen, A. Rouault (Eds.), Trees: Proceedings of a Workshop in Versailles, June 14-16, 1995, Birkhauser, Basel, 1996, pp. 31-50. · Zbl 0864.60070
[6] Biggins, J. D.; Kyprianou, A. E., Seneta-Heyde norming in the branching random walk, Ann. Probab, 25, 337-360 (1997) · Zbl 0873.60062
[7] J.D. Biggins, A.E. Kyprianou, Fixed points of the smoothing transform; the boundary case, Preprint, available online at http://www.math.uu.nl/people/kypriano/smoothing.pdf; J.D. Biggins, A.E. Kyprianou, Fixed points of the smoothing transform; the boundary case, Preprint, available online at http://www.math.uu.nl/people/kypriano/smoothing.pdf · Zbl 1110.60081
[8] Biggins, J. D.; Kyprianou, A. E., Measure change in multitype branching, Adv. Appl. Probab, 36, 544-581 (2004) · Zbl 1056.60082
[9] Bingham, N. H.; Goldie, C. M.; Teugels, J. L., Regular Variation (1989), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0667.26003
[10] Caliebe, A., Symmetric fixed points of a smoothing transformation, Adv. Appl. Probab, 35, 377-394 (2003) · Zbl 1036.60014
[11] Caliebe, A.; Rösler, U., Fixed points with finite variance of a smoothing transformation, Stochastic Process. Appl, 107, 105-129 (2003) · Zbl 1075.60503
[12] A. Caliebe, U. Rösler, Fixed points of a smoothing transformation with finite expectation: closing a gap, Preprint, available online at http://www-computerlabor.math.uni-kiel.de/stochastik/caliebe/Preprint.pdf; A. Caliebe, U. Rösler, Fixed points of a smoothing transformation with finite expectation: closing a gap, Preprint, available online at http://www-computerlabor.math.uni-kiel.de/stochastik/caliebe/Preprint.pdf · Zbl 1036.60014
[13] Durrett, R.; Liggett, T., Fixed points of the smoothing transformation, Z. Wahrsch, 64, 275-301 (1983) · Zbl 0506.60097
[14] Goldie, C. M., Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab, 1, 126-166 (1991) · Zbl 0724.60076
[15] Goldie, C. M.; Maller, R. A., Stability of perpetuities, Ann. Probab, 28, 1195-1218 (2000) · Zbl 1023.60037
[16] Grincevičius, A. K., One limit distribution for a random walk on the line, Lithuanian Math. J, 15, 580-589 (1975) · Zbl 0373.60009
[17] Guivarc’h, Y., Sur une extension de la notion semi-stable, Ann. Inst. Henri Poincaré, 26, 261-285 (1990) · Zbl 0703.60012
[18] Hambly, B. M.; Jones, O. D., Thick and thin points for random recursive fractals, Adv. Appl. Probab, 35, 251-277 (2003) · Zbl 1032.60048
[19] R. Hardy, S.C. Harris, Spine proofs for \(L_p\) http://www.bath.ac.uk/ massch/Research/Papers/spine-Lp-cgce.pdf; R. Hardy, S.C. Harris, Spine proofs for \(L_p\) http://www.bath.ac.uk/ massch/Research/Papers/spine-Lp-cgce.pdf
[20] Hutchinson, J. E.; Rüschendorf, L., Random fractal measures and probability metrics, Adv. Appl. Probab, 32, 925-947 (2000) · Zbl 0984.60062
[21] Iksanov, A. M., On positive distribution of the class \(L\) of self-decomposable laws, Theor. Probab. Math. Statist, 64, 51-61 (2002)
[22] Iksanov, A. M., On perpetuities related to the size-based distributions, Theory Stochastic Process, 24, 128-135 (2002) · Zbl 1026.60016
[23] Iksanov, A. M.; Jurek, Z. J., On fixed points of Poisson shot noise transforms, Adv. Appl. Probab, 34, 798-825 (2002) · Zbl 1030.60011
[24] Iksanov, A. M.; Kim, C. S., On a Pitman-Yor problem, Statist. Probab. Lett, 68, 61-72 (2004) · Zbl 1063.60014
[25] Iksanov, A. M.; Kim, C. S., New explicit examples of fixed points of Poisson shot noise transforms, Austral. New Zealand J. Statist, 46, 313-321 (2004) · Zbl 1071.60008
[26] Kesten, H., Random difference equations and renewal theory for products of random matrices, Acta. Math, 131, 207-248 (1973) · Zbl 0291.60029
[27] Kesten, H.; Maller, R. A., Two renewal theorems for general random walks tending to infinity, Probab. Theory Related Fields, 106, 1-38 (1996) · Zbl 0855.60080
[28] Liu, Q., Sur une équation fonctionnelle et ses applications: une extension du théoréme de Kesten-Stigum concernant des processus de branchement, Adv. Appl. Probab, 29, 353-373 (1997) · Zbl 0901.60055
[29] Liu, Q., Fixed points of a generalized smoothing transformation and applications to the branching random walk, Adv. Appl. Probab, 30, 85-112 (1998) · Zbl 0909.60075
[30] Liu, Q., On generalized multiplicative cascades, Stochastic Process Appl, 86, 263-286 (2000) · Zbl 1028.60087
[31] R. Lyons, A simple path to Biggins’s martingale convergence for branching random walk, in: K.B. Athreya, P. Jagers (Eds.), Classical and Modern Branching Processes, IMA Volumes in Mathematics and its Applications, Vol. 84, Springer, Berlin, 1997, pp. 217-221.; R. Lyons, A simple path to Biggins’s martingale convergence for branching random walk, in: K.B. Athreya, P. Jagers (Eds.), Classical and Modern Branching Processes, IMA Volumes in Mathematics and its Applications, Vol. 84, Springer, Berlin, 1997, pp. 217-221. · Zbl 0897.60086
[32] R. Lyons, Y. Peres, Probability on Trees and Networks, Cambridge University Press, Cambridge, 2005.; R. Lyons, Y. Peres, Probability on Trees and Networks, Cambridge University Press, Cambridge, 2005. · Zbl 1376.05002
[33] Mauldin, R. D.; Williams, S. C., Random recursive constructions: asymptotic geometric and topological properties, Trans. Amer. Math. Soc, 295, 325-346 (1986) · Zbl 0625.54047
[34] Pitman, J.; Yor, M., Infinitely divisible laws associated with hyperbolic functions, Canad. J. Math, 55, 292-330 (2003) · Zbl 1039.11054
[35] Rachev, S. T.; Rüschendorf, L., Probability metrics and recursive algorithms, Adv. Appl. Probab, 27, 770-799 (1995) · Zbl 0829.60094
[36] Ramachandran, B.; Lau, K. S., Functional Equations in Probability Theory (1991), Academic Press: Academic Press New York · Zbl 0743.60022
[37] Rösler, U., A fixed point theorem for distributions, Stochastic Process, Appl, 42, 195-214 (1992) · Zbl 0761.60015
[38] Sato, K., Lévy Processes and Infinitely Divisible Distributions (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0973.60001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.