×

Rough isometry and \(p\)-harmonic boundaries of complete Riemannian manifolds. (English) Zbl 1082.31005

The \(p\)-harmonic boundary of a complete Riemannian manifold \(M\) is introduced. This is a certain subset of \(\widehat{M}\setminus M\), where \(\widehat{M}\) is the so-called Royden \(p\)-compactification of \(M\). The author proves that every bounded, energy-finite \(p\)-harmonic function on \(M\) whose distributional gradient belongs to \(L^p(M)\) is uniquely determined by its limit values on the \(p\)-harmonic boundary. It is also proven that a rough isometry between complete Riemannian manifolds always induces a homeomorphism between their \(p\)-harmonic boundaries and a bijection between their spaces of bounded, energy-finite \(p\)-harmonic functions with distributional gradient in \(L^p\). In particular, in the case of the Laplacian, a rough isometry induces a linear isomorphism between the spaces of bounded harmonic functions with finite Dirichlet integral.

MSC:

31C12 Potential theory on Riemannian manifolds and other spaces
58J32 Boundary value problems on manifolds
31C45 Other generalizations (nonlinear potential theory, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Buser, P.: ?A note on the isoperimetric constant?, Ann. Sci. Ecole Norm. Sup. Paris 15 (1982), 213-230. · Zbl 0501.53030
[2] Coulhon, Th. and Saloff-Coste, L.: ?Variétés riemanniennes isométriques á l?infini?, Rev. Mat. Iberoamericana 11 (1995), 687-726. · Zbl 0845.58054
[3] Grigor?yan, A.A.: ?On Liouville theorems for harmonic functions with finite Dirichlet integral?, Mat. Sbornik 132(4), 496-516 (in Russian) (English transl. Math. USSR Sbornik 60(2) (1988), 485-504).
[4] Heinonen, J., Kilpeläinen, T. and Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford, 1993. · Zbl 0780.31001
[5] Hewitt, E. and Stormberg, K.: Real and Abstract Analysis, Springer-Verlag, New York, 1965.
[6] Holopainen, I.: ?Rough isometries and p-harmonic functions with finite Dirichlet integral?, Rev. Mat. Iberoamericana 10 (1994), 143-176. · Zbl 0797.31008
[7] Holopainen, I.: ?Volume growth, Green?s functions and parabolicity of ends?, Duke Math. J. 97(2) (1999), 319-346. · Zbl 0955.31003
[8] Kanai, M.: ?Rough isometries, and combinatorial approximations of geometries of non-compact Riemannian manifolds?, J. Math. Soc. Japan 37(3) (1985), 391-413. · Zbl 0554.53030
[9] Lee, Y.H.: ?Rough isometry and energy finite solutions of elliptic equations on Riemannian manifolds?, Math. Ann. 318 (2000), 181-204. · Zbl 0968.58018
[10] Lelong-Ferrand, J.: ?Etude d?une classe d?applications Liée à des homomorphismes d?algebres de fonctions, et generalisant les quasi conromes?, Duke Math. J. 40 (1973), 163-186. · Zbl 0272.30025
[11] Lewis, L.G.: ?Quasiconformal mappings and Royden algebras in space?, Trans. Amer. Math. Soc. 158 (1971), 481-492. · Zbl 0214.38302
[12] Malý, J. and Ziemer, W.P.: Fine Regularity of Solutions of Elliptic Partial Differential Equations, Math. Surveys Monographs 51, Amer. Math. Soc., 1997. · Zbl 0882.35001
[13] Nakai, M.: ?Existence of quasiconformal mappings between Riemann surfaces?, Hokkaido Math. J. 10 (1981), 525-530. · Zbl 0502.30016
[14] Nakai, M.: ?Existence of quasi-isometric mappings and Royden compactifications?, Ann. Acad. Sci. Fenn. 25 (2000), 239-260. · Zbl 0947.30010
[15] Nakai, M. and Tanaka, H.: ?Existence of quasiconformal mappings between Riemannian manifolds?, Kodai Math. J. 5 (1982), 122-131. · Zbl 0501.30017
[16] Sario, L. and Nakai, M.: Classification Theory of Riemann Surfaces, Springer-Verlag, Berlin, 1970. · Zbl 0199.40603
[17] Soderborg, N.: ?An ideal boundary for domains in n-space?, Ann. Acad. Sci. Fenn. 19 (1994), 147-165. · Zbl 0797.30015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.