Oscillation criteria of second-order half-linear dynamic equations on time scales. (English) Zbl 1082.34032

The subject of the paper is oscillation of solutions of second-order delta differential equations of the type \[ (p(t)(x^\Delta(t))^\gamma)^\Delta+q(t)x^\gamma(t)=0\tag{1} \] on quite general time scales. Here, \(\gamma>1\) is an odd positive integer and \(p,\;q\) are positive right-dense continuous functions. The function \((1/p)^{1/ \gamma}\) may be integrable (in the sense of time scale analysis) at \(+\infty\) or not. Sufficient conditions for the oscillatory character of all non-trivial solutions of (1) are given in both cases. The main theorems are applicable, in particular, to half-linear difference equations and half-linear ordinary differential equations, unifying and extending previous results. At the end of the paper, some examples are discussed to illustrate the range of applicability of the main results.


34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
39A12 Discrete version of topics in analysis
Full Text: DOI


[1] R.P. Agarwal, M. Bohner, D. O’Regan, A. Peterson, Dynamic equations on time scales: a survey, in: R.P. Agarwal, M. Bohner, D. O’Regan (Eds.), Dynamic Equations on Time Scales (Preprint in Ulmer Seminare 5), J. Comput. Appl. Math. 141 (2002) 1-26 (special issue). · Zbl 1020.39008
[2] Akın, E.; Erbe, L.; Kaymakçalan, B.; Peterson, A., Oscillation results for a dynamic equation on a time scale, J. differential equations appl., 7, 793-810, (2001) · Zbl 1002.39024
[3] Bohner, E.A.; Hoffacker, J., Oscillation properties of an emden – fowler type equations on discrete time scales, J. differential equations appl., 9, 603-612, (2003) · Zbl 1038.39009
[4] Bohner, M.; Peterson, A., Dynamic equations on time scalesan introduction with applications, (2001), Birkhäuser Boston
[5] Bohner, M.; Peterson, A., Advances in dynamic equations on time scales, (2003), Birkhäuser Boston · Zbl 1025.34001
[6] Bohner, M.; Saker, S.H., Oscillation of second order nonlinear dynamic equations on time scales, Rocky mountain J. math., 34, 1239-1254, (2004) · Zbl 1075.34028
[7] M. Bohner, S.H. Saker, Oscillation criteria for perturbed nonlinear dynamic equations, Math. Comp. Modelling, in press. · Zbl 1112.34019
[8] O. Došlý, S. Hilger, A necessary and sufficient condition for oscillation of the Sturm-Liouville dynamic equation on time scales, in: R.P. Agarwal, M. Bohner, D. O’Regan (Eds.), Dynamic Equations on Time Scales, J. Comp. Appl. Math. 141 (1-2) (2002) 147-158 (special issue).
[9] Erbe, L., Oscillation criteria for second order linear equations on a time scale, Canad. appl. math. quart., 9, 1-31, (2001) · Zbl 1050.39024
[10] Erbe, L.; Peterson, A., Positive solutions for a nonlinear differential equation on a measure chain, Math. comput. modelling boundary value problems related topics, 32, 571-585, (2000) · Zbl 0963.34020
[11] L. Erbe, A. Peterson, Riccati equations on a measure chain, in: G.S. Ladde, N.G. Medhin, M. Sambandham (Eds.), Proceedings of Dynamic Systems and Applications, vol. 3, Dynamic Publishers, Atlanta, 2001, pp. 193-199. · Zbl 1008.34006
[12] L. Erbe, A. Peterson, Oscillation criteria for second-order matrix dynamic equations on a time scale, in: R.P. Agarwal, M. Bohner, D. O’Regan (Eds.), Dynamic Equations on Time Scales, J. Comput. Appl. Math. 141 (2002) 169-185 (special issue). · Zbl 1017.34030
[13] Erbe, L.; Peterson, A., Boundedness and oscillation for nonlinear dynamic equations on a time scale, Proc. amer. math. soc., 32, 735-744, (2004) · Zbl 1055.39007
[14] Erbe, L.; Peterson, A.; Saker, S.H., Oscillation criteria for second-order nonlinear dynamic equations on time scales, J. London math. soc., 67, 701-714, (2003) · Zbl 1050.34042
[15] G.Sh. Guseinov, B. Kaymakçalan, On a disconjugacy criterion for second order dynamic equations on time scales, in: R.P. Agarwal, M. Bohner, D. O’Regan (Eds.), Dynamic Equations on Time Scales, J. Comput. Appl. Math. 141 (2002) 187-196. · Zbl 1014.34023
[16] Hilger, S., Analysis on measure chains—a unified approach to continuous and discrete calculus, Results math., 18, 18-56, (1990) · Zbl 0722.39001
[17] Kamenev, I.V., An integral criterion for oscillation of linear differential equations of second order, Mat. zametki, 23, 249-251, (1978) · Zbl 0386.34032
[18] S.H.G. Olumolode, N. Pennington, A. Peterson, Oscillation of an Euler-Cauchy dynamic equation, Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations, Wilmington, 2002, pp. 24-27. · Zbl 1052.39007
[19] Saker, S.H., Oscillation of nonlinear dynamic equations on time scales, Appl. math. comput., 148, 81-91, (2004) · Zbl 1045.39012
[20] Thandapani, E.; Ravi, K.; Graef, J.R., Oscillation and comparison theorems for half-linear second-order difference equations, Comput. math. appl., 42, 953-960, (2001) · Zbl 0983.39006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.