Bandini, Andrea Three-descent and the Birch and Swinnerton-Dyer conjecture. (English) Zbl 1083.11040 Rocky Mt. J. Math. 34, No. 1, 13-27 (2004). The first part of this article explains how to perform a simple \(3\)-descent on elliptic curves of the form \(y^2 = x^3 + a\), based on the expositions of P. Satgé [J. Number Theory 23, 294–317 (1986; Zbl 0601.14027)] and J. Top [The proceedings of the third conference of the Canadian Number Theory Association, held at Queen’s University, Kingston, Canada, August 18–24, 1991. Oxford: Clarendon Press, 303–317 (1993; Zbl 0804.11040)]. The second part gives numerical results and verifies the conjecture of Birch and Swinnerton-Dyer for some specific examples. Reviewer: Franz Lemmermeyer (Bilkent) Cited in 4 Documents MSC: 11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture Keywords:elliptic curves; 3-descent; Tate-Shafarevich group; Birch and Swinnerton-Dyer conjecture Citations:Zbl 0601.14027; Zbl 0804.11040 PDF BibTeX XML Cite \textit{A. Bandini}, Rocky Mt. J. Math. 34, No. 1, 13--27 (2004; Zbl 1083.11040) Full Text: DOI References: [1] B. Birch and P. Swinnerton-Dyer, Notes on elliptic curves II, J. Reine Angew. Math. 218 (1965), 79-108. · Zbl 0147.02506 [2] J.W.S. Cassels, Second descents for elliptic curves , J. Reine Angew. Math. 494 (1998), 101-127. · Zbl 0883.11028 [3] J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer , Invent. Math. 39 (1977), 223-251. · Zbl 0359.14009 [4] ——–, On \(p\)-adic \(L\)-functions and elliptic units , J. Austral. Math. Soc. Ser. A 26 (1978), 1-25. · Zbl 0442.12007 [5] B. Gross, On the conjecture of Birch and Swinnerton-Dyer for elliptic curves with complex multiplication , in Number theory related to Fermat’s last theorem (N. Koblitz, ed.), Progr. Math., vol. 26, Birkhäuser, Boston, 1982, pp. 219-236. · Zbl 0506.14040 [6] J.R. Merriman, S. Siksek and N.P. Smart, Explicit \(4\)-descents on an elliptic curve , Acta Arith. 77 (1996), 385-404. · Zbl 0873.11036 [7] K. Rubin, Tate-Shafarevich groups and \(L\)-functions of elliptic curves with complex multiplication , Invent. Math. 89 (1987), 527-560. · Zbl 0628.14018 [8] ——–, The “main conjecture” of Iwasawa theory for imaginary quadratic fields , Invent. Math. 103 (1991), 25-68. · Zbl 0737.11030 [9] ——–, Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer , in Arithmetic theory of elliptic curves (C. Viola, ed.), Lecture Notes in Math., vol. 1716, Springer-Verlag, New York, 1999, pp. 167-234. · Zbl 0991.11028 [10] P. Satgé, Groupes de Selmer et corps cubique , J. Number Theory 23 (1986), 294-317. · Zbl 0601.14027 [11] E.F. Schaefer, \(2\)-descent on the Jacobian of hyperelliptic curves , J. Number Theory 51 (1995), 219-232. · Zbl 0832.14016 [12] ——–, Class groups and Selmer groups , J. Number Theory 56 (1996), 79-114. · Zbl 0859.11034 [13] J.H. Silverman, The arithmetic of elliptic curves , Graduate Texts in Math., vol. 106 -1986. · Zbl 0585.14026 [14] ——–, Advanced topics in the arithmetic of elliptic curves , Graduate Texts in Math., vol. 151, Springer-Verlag, New York, 1994. · Zbl 0911.14015 [15] N.M. Stephens, The diophantine equation \(X^3+Y^3=DZ^3\) and the conjectures of Birch and Swinnerton-Dyer , J. Reine Angew. Math. 231 (1968), 121-162. · Zbl 0221.10023 [16] J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil , in Modular functions of one variable IV (B.J. Birch and W. Kuyk, eds.), Lecture Notes in Math., vol. 476, Springer-Verlag, New York, 1975, pp. 33-52. · Zbl 1214.14020 [17] J. Top, Descent by \(3\)-isogeny and \(3\)-rank of quadratic fields in Advances in number theory, Proceedings of Conf. in Kingston (F.Q. Gouvea and N. Yui, eds.), Oxford Sci. Publ., New York, 1993, pp. 303-317. · Zbl 0804.11040 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.