×

Characterization of boundary values of functions in Hardy spaces with applications in signal analysis. (English) Zbl 1086.30035

Let \(H(f)(t)\) be the Hilbert transform of a function \(f\) defined on the real line. The author characterizes triples of functions \((\rho,c,s)\) satisfying the equation \[ H(\rho (\cdot)c(\cdot))(t)=\rho (t)s(t), c^2+s^2=1, \rho (t)\geq 0. \]

MSC:

30D55 \(H^p\)-classes (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] E. Bedrosian, A product theorem for Hilbert transform , Proc. IEEE 51 (1963), 868-869.
[2] W.F. Donoghue, Jr., Distributions and Fourier transforms , Academic Press, New York, 1969. · Zbl 0188.18102
[3] J.B. Garnett, Bounded analytic functions , Academic Press, New York, 1987. · Zbl 1106.30001
[4] N.E. Huang et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , Proc. Roy. Soc. London 454 (1998), 903-995. JSTOR: · Zbl 0945.62093
[5] B.H. Li, On distributions with parameter and their analytic representations , Chinese Math. Ann. 2 (1981), 399-405. · Zbl 0487.46023
[6] B.H. Li and L.K. Guo, Riesz transformations of distributions and a generalized Hardy space , Approx. Theory Appl. 5 (1988), 1-17. · Zbl 0736.46036
[7] Y. Meyer, Wavelets and operators , Cambridge Univ. Press, Cambridge, 1993. · Zbl 0810.42015
[8] B. Picinbono, On instantaneous amplitude and phase of signals , IEEE Trans. Signal Proc. 45 (1997), 552-560.
[9] T. Qian, Singular integrals with holomorphic kernels and \(H^\infty\)-Fourier multipliers on star-shaped Lipchitz curves , Stud. Math. 123 (1997), 195-216. · Zbl 0924.42012
[10] ——–, Unit analytic signals and harmonic measures , J. Math. Anal. Appl., · Zbl 1082.94006
[11] T. Qian, Q-H. Chen and L-Q. Li, Analytic unit quadrature signals with nonlinear phase , Physica D 203 (2005), 80-87. · Zbl 1070.94504
[12] W. Rudin, Real and complex analysis , McGraw-Hill Inc., New York, 1966. · Zbl 0142.01701
[13] E.M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, NJ, 1971. · Zbl 0232.42007
[14] A. Zygmund, Trigonometric series , Cambridge Univ. Press, Cambridge, 1959. · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.