×

Adaptive backstepping control of a class of chaotic systems. (English) Zbl 1090.34555

Summary: This paper is concerned with the control of a class of chaotic systems using adaptive backstepping, which is a systematic design approach for constructing both feedback control laws and associated Lyapunov functions. Firstly, we show that many chaotic systems as paradigms in the research of chaos can be transformed into a class of nonlinear systems in the so-called nonautonomous “strict-feedback” form. Secondly, an adaptive backstepping control scheme is extended to the nonautonomous “strict-feedback” system, and it is shown that the output of the nonautonomous system can asymptotically track the output of any known, bounded and smooth nonlinear reference model. Finally, the Duffing oscillator, with key constant parameters unknown, is used as an example to illustrate the feasibility of the proposed control scheme. Simulation studies are conducted to show the effectiveness of the method proposed.

MSC:

34C28 Complex behavior and chaotic systems of ordinary differential equations
93C40 Adaptive control/observation systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1142/S0218127496000254 · Zbl 0900.70413 · doi:10.1142/S0218127496000254
[2] DOI: 10.1016/0375-9601(96)00182-X · Zbl 0972.93509 · doi:10.1016/0375-9601(96)00182-X
[3] Chua L. O., IEICE Trans. Fundamentals E76-A pp 704– (1993)
[4] Chua L. O., IEEE Trans. Circuits Syst. (1986)
[5] DOI: 10.1142/S0218127497001278 · Zbl 0967.93512 · doi:10.1142/S0218127497001278
[6] DOI: 10.1016/S0006-3495(61)86902-6 · doi:10.1016/S0006-3495(61)86902-6
[7] DOI: 10.1109/81.542281 · doi:10.1109/81.542281
[8] DOI: 10.1016/S0005-1098(98)00070-3 · Zbl 0945.93559 · doi:10.1016/S0005-1098(98)00070-3
[9] DOI: 10.1109/9.100933 · Zbl 0768.93044 · doi:10.1109/9.100933
[10] DOI: 10.1016/0167-6911(92)90111-5 · Zbl 0763.93043 · doi:10.1016/0167-6911(92)90111-5
[11] DOI: 10.1016/0022-0396(68)90048-X · Zbl 0159.12002 · doi:10.1016/0022-0396(68)90048-X
[12] DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[13] DOI: 10.1109/81.404059 · Zbl 0845.93040 · doi:10.1109/81.404059
[14] DOI: 10.1109/9.704978 · Zbl 0957.93046 · doi:10.1109/9.704978
[15] DOI: 10.1016/0005-1098(95)00147-6 · Zbl 0847.93031 · doi:10.1016/0005-1098(95)00147-6
[16] DOI: 10.1016/0375-9601(76)90101-8 · Zbl 1371.37062 · doi:10.1016/0375-9601(76)90101-8
[17] DOI: 10.1080/14786440108564176 · doi:10.1080/14786440108564176
[18] DOI: 10.1142/S0218127496000187 · Zbl 0875.93182 · doi:10.1142/S0218127496000187
[19] DOI: 10.1023/A:1008258403620 · Zbl 0921.93025 · doi:10.1023/A:1008258403620
[20] DOI: 10.1016/S0005-1098(96)00222-1 · Zbl 0876.93083 · doi:10.1016/S0005-1098(96)00222-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.