×

The dynamics of systems of complex nonlinear oscillators: a review. (English) Zbl 1091.34524

Summary: Dynamical systems in the real domain are currently one of the most popular areas of scientific study. A wealth of new phenomena of bifurcations and chaos has been discovered concerning the dynamics of nonlinear systems in real phase space. There is, however, a wide variety of physical problems, which, from a mathematical point of view, can be more conveniently studied using complex variables. The main advantage of introducing complex variables is the reduction of phase space dimensions by a half. In this survey, we focus on such classes of autonomous, parametrically excited and modulated systems of complex nonlinear oscillators. We first describe appropriate perturbation approaches, which are specially adapted to study periodic solutions, their stability and control. The stability analysis of these fundamental periodic solutions, though local by itself, can yield considerable information about more global properties of the dynamics, since it is in the vicinity of such solutions that the largest regions of regular or chaotic motion are observed, depending on whether the periodic solution is, respectively, stable or unstable. We then summarize some recent studies on fixed-points, periodic solutions, strange attractors, chaotic behavior and the problem of chaos control in systems of complex oscillators. Some important applications in physics, mechanics and engineering are mentioned. The connection with a class of complex partial differential equations, which contains such famous examples, as the nonlinear Schrödinger and Ginzburg-Landau equations is also discussed. These complex equations play an important role in many branches of physics, e.g., fluids, superconductors, plasma physics, geophysical fluids, modulated optical waves and electromagnetic fields.

MSC:

34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
37C99 Smooth dynamical systems: general theory
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
70K99 Nonlinear dynamics in mechanics
93C10 Nonlinear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Babloyantz A., Physica 86 pp 274–
[2] DOI: 10.1016/0020-7462(73)90021-8 · Zbl 0298.34038
[3] Bazzani A., Il Nuovo Cimento 102 pp 51–
[4] Bellman R., Perturbation Techniques in Mathematics, Physics, and Engineering (1966) · Zbl 0274.34001
[5] Bondarenko G. V., The Hill Differential Equation and its Uses in Engineering Vibration Problems (1936)
[6] Bountis T., Particle Acc. 22 pp 124–
[7] DOI: 10.1016/0020-7462(74)90010-9 · Zbl 0294.70024
[8] Chung K. W., Nonlin. Dyn. 28 pp 234–
[9] Cole J. D., Perturbation Methods in Applied Mathematics (1968) · Zbl 0162.12602
[10] Collet P., Iterated Maps on the Intervals as Dynamical Systems (1980) · Zbl 0458.58002
[11] DOI: 10.1007/BF01176982 · Zbl 0699.34032
[12] DOI: 10.1016/0022-460X(84)90317-1
[13] DOI: 10.1016/0022-460X(92)90682-N · Zbl 0925.73604
[14] DOI: 10.1016/0022-460X(92)90369-9 · Zbl 0925.34071
[15] Cveticanin L., JSME Int. J. Ser. C 37 pp 41–
[16] DOI: 10.1006/jsvi.1994.1223 · Zbl 1078.70510
[17] Cveticanin L., Physica 297 pp 348– · Zbl 0969.34501
[18] DOI: 10.1016/S0960-0779(01)00155-2
[19] Drattarola M., IEEE Trans. Circuits Syst. 24
[20] Eckhardt B., Physica 65 pp 100–
[21] Erugin N. P., Linear Systems of Ordinary Differential Equations with Periodic and Quasi-Periodic Coefficients (1966) · Zbl 0141.27803
[22] DOI: 10.1007/BF00046307
[23] J. Ford, Fundamental Problems in Statistical Mechanics 3, ed. E. G. D. Cohen (North-Holland, Amsterdam – NY, 1975) pp. 215–255.
[24] DOI: 10.1016/0020-7462(69)90001-8 · Zbl 0179.53803
[25] DOI: 10.1137/0142010 · Zbl 0485.70027
[26] DOI: 10.1007/978-1-4612-1140-2 · Zbl 0515.34001
[27] DOI: 10.1007/BFb0041283
[28] DOI: 10.1016/S0960-0779(99)00192-7 · Zbl 1016.37050
[29] R. H. G. Helleman, Fundamental Problems in Statistical Mechanics 5, ed. E. G. D. Cohen (North-Holland, Amsterdam – NY, 1980) pp. 165–233.
[30] Hilborn R. C., Chaos and Nonlinear Dynamics (1994) · Zbl 0804.58002
[31] DOI: 10.1137/0138005 · Zbl 0472.70024
[32] Hori Y., Trans. Amer. Soc. Mech. Eng., J. Appl. Mech. pp 189–
[33] Hwang C., Physica 92 pp 95–
[34] DOI: 10.1016/0021-9991(87)90097-0 · Zbl 0631.65129
[35] DOI: 10.1016/S0020-7462(98)00080-8 · Zbl 1068.70533
[36] Jordan D., Nonlinear Ordinary Differential Equations (1977) · Zbl 0417.34002
[37] Krylov N., Introduction to Non-Linear Mechanics (1974)
[38] Lieberman M., Regular and Stochastic Motion (1983)
[39] DOI: 10.1016/S0960-0779(01)00156-4 · Zbl 0997.35089
[40] DOI: 10.1016/S0020-7462(99)00012-8 · Zbl 1005.34023
[41] DOI: 10.1006/jsvi.2000.3386 · Zbl 1237.34063
[42] DOI: 10.1016/S0020-7462(01)00116-0 · Zbl 1346.34034
[43] Magnus W., Hill’s Equation (1996) · Zbl 0158.09604
[44] Mahmoud G. M., J. Appl. Mech. 110 pp 721–
[45] Mahmoud G. M., Physica 181 pp 385– · Zbl 0776.34033
[46] Mahmoud G. M., Physica 199 pp 87– · Zbl 0803.34034
[47] Mahmoud G. M., Bull. Fac. Sci., Assiut Univ. 23 pp 1–
[48] Mahmoud G. M., Il Nuovo Cimento 110 pp 1311–
[49] DOI: 10.1016/S0020-7462(96)00126-6 · Zbl 0883.34049
[50] Mahmoud G. M., Physica 242 pp 239–
[51] Mahmoud G. M., Physica 253 pp 211–
[52] Mahmoud G. M., Il Nuovo Cimento 114 pp 31–
[53] DOI: 10.1016/S0020-7462(99)00016-5 · Zbl 1068.70525
[54] Mahmoud G. M., Physica 278 pp 390–
[55] Mahmoud G. M., Physica 286 pp 133– · Zbl 1053.34518
[56] DOI: 10.1016/S0020-7462(00)00070-6 · Zbl 1345.70040
[57] Mahmoud G. M., Int. J. Mod. Phys. 12 pp 889–
[58] Mahmoud G. M., Physica 292 pp 193– · Zbl 0972.37054
[59] Mahmoud G. M., Il Nuovo Cimento 116 pp 1113–
[60] Mahmoud G. M., Int. J. Diff. Eqs. Appl. 4 pp 437–
[61] DOI: 10.1016/S0960-0779(02)00411-3 · Zbl 1098.70527
[62] McLachlan N. W., Theory and Applications of Mathieu Functions (1947) · Zbl 0029.02901
[63] Minorsky N., Nonlinear Oscillations (1967)
[64] DOI: 10.1103/PhysRevLett.77.267
[65] Month M., AIP Conference Proceedings No. 57, in: Nonlinear Dynamics and the Beam–Beam Interaction (1979)
[66] Murray J. D., Mathematical Biology, I. An Introduction (2002) · Zbl 1006.92001
[67] DOI: 10.1016/S0022-460X(86)80146-8
[68] DOI: 10.1016/S0020-7462(98)00087-0 · Zbl 1068.70526
[69] Nayfeh A. H., Perturbation Methods (1973) · Zbl 0265.35002
[70] Nayfeh A. H., Non-Linear Oscillations (1979)
[71] DOI: 10.1115/1.3125853
[72] DOI: 10.1002/9783527617548
[73] Nayfeh A. H., Non-Linear Interaction, Analytical, Computational, and Experimental Methods (2000)
[74] DOI: 10.1007/BF00046305
[75] Newell A. C., Nonlinear Optics, Reading (1992) · Zbl 1054.78001
[76] DOI: 10.1103/PhysRevLett.64.1196 · Zbl 0964.37501
[77] Ott E., Chaos in Dynamical Systems (1993) · Zbl 0792.58014
[78] Pyragas K., Phys. Lett. 170 pp 421–
[79] Pyragas K., Phys. Lett. 181 pp 203–
[80] Ramirez J., IEEE Trans. Circuits Syst. 2 pp 168–
[81] DOI: 10.1016/S0020-7462(98)00065-1 · Zbl 1068.74562
[82] DOI: 10.1088/0031-8949/40/3/031 · Zbl 1063.37520
[83] Rulkov N. F., Phys. Rev. 50 pp 314–
[84] Schuster H. G., Determining Chaos: Introduction (1988) · Zbl 0707.58003
[85] DOI: 10.1137/0145019 · Zbl 0577.34038
[86] Shtokalo I. Z., Linear Differential Equations with Variable Coefficients (1961) · Zbl 0061.18308
[87] Strogatz S. H., Nonlinear Dynamics and Chaos (1994)
[88] Struble R., Nonlinear Differential Equations (1962) · Zbl 0124.04904
[89] DOI: 10.1016/0020-7462(80)90027-X · Zbl 0443.73039
[90] DOI: 10.1007/978-1-4757-4067-7
[91] Wolf A., Physica 16 pp 285–
[92] DOI: 10.1088/0951-7715/12/5/304 · Zbl 0935.35159
[93] DOI: 10.1006/jsvi.1994.1294 · Zbl 0945.70534
[94] DOI: 10.1007/BF00046304
[95] Yakubovich V. A., Linear Differential Equations with Periodic Coefficients (1975) · Zbl 0308.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.