Sekino, Yasuhiro Supercurrents in Matrix theory and the generalized AdS/CFT correspondence. (English) Zbl 1097.81728 Nucl. Phys., B 602, No. 1-2, 147-171 (2001). Summary: We investigate Matrix theory in the large-\(N\) limit following the conjectured correspondence between Matrix theory and supergravity on the near-horizon limit of the D0-brane background. We analyze the complete fermionic spectrum of supergravity and obtain two-point functions of the supercurrents in Matrix theory. By examining the large-\(N\) scaling properties of the correlators, we analyze the behavior of the supercurrents under the boost in the 11th direction and discuss the consistency of the 11-dimensional interpretation of the supersymmetry of Matrix theory. Cited in 5 Documents MSC: 81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory 81T60 Supersymmetric field theories in quantum mechanics 83E50 Supergravity 83E30 String and superstring theories in gravitational theory Keywords:fermionic supergravity spectrum; supercurrent two-point functions; large-N scaling properties PDF BibTeX XML Cite \textit{Y. Sekino}, Nucl. Phys., B 602, No. 1--2, 147--171 (2001; Zbl 1097.81728) Full Text: DOI arXiv References: [1] Banks, T.; Fischler, W.; Shenker, S. H.; Susskind, L., M-theory as a Matrix model: a conjecture, Phys. Rev. D, 55, 5112 (1997) [2] Susskind, L., Another conjecture about M(atrix) theory [3] Seiberg, N., Why is the Matrix model correct?, Phys. Rev. Lett., 79, 3577 (1997) · Zbl 0946.81062 [4] Sen, A., D0 branes on \(T^n\) and Matrix theory, Adv. Theor. Math. Phys., 2, 51 (1998) · Zbl 0907.58087 [5] Becker, K.; Becker, M., A two-loop test of M(atrix) theory, Nucl. Phys. B, 506, 48 (1997) · Zbl 0925.81264 [6] Becker, K.; Becker, M.; Polchinski, J.; Tseytlin, A., Higher order graviton scattering in M(atrix) theory, Phys. Rev. D, 56, 3174 (1997) [7] Okawa, Y.; Yoneya, T., Equations of motion and Galilei invariance in D-particle dynamics, Nucl. Phys. B, 541, 163 (1999) · Zbl 0947.81069 [8] Maldacena, J., The large \(N\) limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2, 231 (1998) · Zbl 0914.53047 [9] Itzhaki, N.; Maldacena, J.; Sonnenschein, J.; Yankielowicz, S., Supergravity and the large \(N\) limit of theories with sixteen supercharges, Phys. Rev. D, 58, 046004 (1998) [10] Jevicki, A.; Yoneya, T., Space-time uncertainty principle and conformal symmetry in D-particle dynamics, Nucl. Phys. B, 535, 335 (1998) · Zbl 1080.81602 [11] Sekino, Y.; Yoneya, T., Generalized AdS-CFT correspondence for Matrix theory in the large \(N\) limit, Nucl. Phys. B, 570, 174 (2000) · Zbl 0951.81057 [12] Gubser, S. S.; Klebanov, I. R.; Polyakov, A. M., Gauge theory correlators from noncritical string theory, Phys. Lett. B, 428, 105 (1998) · Zbl 1355.81126 [13] Witten, E., Anti de Sitter space and holography, Adv. Theor. Math. Phys., 2, 505 (1998) · Zbl 1057.81550 [14] Banks, T.; Seiberg, N.; Shenker, S., Branes from matrices, Nucl. Phys. B, 490, 91 (1997) · Zbl 0925.81253 [15] Hyun, S.; Kiem, Y.; Shin, H., Infinite Lorentz boost along the M-theory circle and non-asymptotically flat solutions in supergravities, Phys. Rev. D, 57, 4856 (1998) [16] Hyun, S., The background geometry of DLCQ supergravity, Phys. Lett. B, 441, 116 (1998) [17] Hyun, S.; Kiem, Y., Background geometry of DLCQ M theory on a \(p\)-torus and holography, Phys. Rev. D, 59, 026003 (1999) [18] van Niewenhuizen, P., The complete mass spectrum of \(d=11\) supergravity compactified on \(S_4\) and a general mass formula for arbitrary cosets \(M_4\), Class. Quantum Grav., 2, 1 (1985) [19] Henningson, M.; Sfetsos, K., Spinors and the AdS/CFT correspondence, Phys. Lett. B, 431, 63 (1998) [20] Henneaux, M., Boundary terms in the AdS/CFT correspondence for spinor fields [21] Taylor, W.; Van Raamsdonk, M., Supergravity currents and linearized interactions for Matrix Theory configurations with fermionic backgrounds, JHEP, 9904, 013 (1999) [22] Dasgupta, A.; Nicolai, H.; Plefka, J., Vertex operators for the supermembrane, JHEP, 0005, 007 (2000) · Zbl 0990.81619 [23] Taylor, W.; Van Raamsdonk, M., Multiple D0-branes in weakly curved backgrounds, Nucl. Phys. B, 558, 63-95 (1999) · Zbl 1068.81582 [24] Taylor, W.; Van Raamsdonk, M., Multiple Dp-branes in weak background fields, Nucl. Phys. B, 573, 703-734 (2000) · Zbl 0953.81088 [25] Klebanov, I.; Taylor, W.; Van Raamsdonk, M., Absorption of dilaton partial waves by D3-branes, Nucl. Phys. B, 560, 207-229 (1999) · Zbl 0957.81056 [26] Polchinski, J., M-theory and the light cone, Prog. Theor. Phys. Suppl., 134, 158 (1999) [27] Yoneya, T., Generalized conformal symmetry and oblique AdS/CFT correspondence for Matrix theory · Zbl 0952.81029 [28] de Boer, J.; Verlinde, E.; Verlinde, H., On the holographic renormalization group, JHEP, 0008, 003 (2000) · Zbl 0989.81538 [29] Kabat, D.; Lifschytz, G., Approximations for strongly-coupled supersymmetric quantum mechanics, Nucl. Phys. B, 571, 419 (2000) · Zbl 1028.81507 [30] Kabat, D.; Lifschytz, G.; Lowe, D. A., Black hole thermodynamics from calculations in strongly-coupled gauge theory · Zbl 1067.83548 [31] Dijkgraaf, R.; Verlinde, E.; Verlinde, H., Matrix string theory, Nucl. Phys. B, 500, 43 (1997) · Zbl 0934.81044 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.