Kawazoe, T. (ed.); Ōshima, T. (ed.); Sano, S. (ed.) Representation theory of Lie groups and Lie algebras. Proceedings of the conference, Fuji-Kawaguchiko, Japan, August 31–September 3, 1990. (English) Zbl 1098.22002 Hackensack, NJ: World Scientific (ISBN 981-02-1090-6). viii, 245 p. (1992). Show indexed articles as search result. The articles of this volume will be reviewed individually.Indexed articles:Furutsu, Hirotoshi; Nishiyama, Kyo, Realization of irreducible unitary representations of \(\mathfrak{osp}(M/N;\mathbb R)\) on Fock spaces, 1-21 [Zbl 1195.17004]Hasegawa, Koji, On the crossing symmetry of the broken \(Z_N\)-symmetric solution of the Yang-Baxter equation, 22-58 [Zbl 1159.82303]Kobayashi, Toshiyuki, Discontinuous groups acting on homogeneous spaces of reductive type, 59-75 [Zbl 1193.22010]Wallach, Nolan R., Polynomial differential operators associated with Hermitian symmetric spaces, 76-94 [Zbl 1226.22018]Baldoni, Silva M. W.; Knapp, A. W., Intertwining operators into \(L^2(G/H)\), 95-119 [Zbl 1226.22016]Lipsman, Ronald L., The Penney-Fujiwara Plancherel formula for homogeneous spaces, 120-139 [Zbl 1226.22008]Fujiwara, Hidenori, The Plancherel formula for monomial representations of nilpotent Lie groups, 140-150 [Zbl 1226.22010]Nghiêm Xuân Hai, The Fourier integral transform on nilpotent Lie groups, 151-165 [Zbl 1226.22009]Boyom, Nguiffo B., Vanishing of semisimple cohomology classes of nilpotent Lie groups: two geometric and topological applications, 166-184 [Zbl 1226.22007]Molchanov, V. F., Harmonic analysis on semisimple symmetric spaces of rank one, 185-207 [Zbl 1226.22013]Singh, Hukum, Second order differential equations in a Lie group, 208-219 [Zbl 1226.53043]Kawazoe, Takeshi, A method of reduction in harmonic analysis on real rank 1 semisimple Lie groups. II, 220-237 [Zbl 1226.22011] MSC: 22-06 Proceedings, conferences, collections, etc. pertaining to topological groups 00B25 Proceedings of conferences of miscellaneous specific interest 17-06 Proceedings, conferences, collections, etc. pertaining to nonassociative rings and algebras PDF BibTeX XML Cite \textit{T. Kawazoe} (ed.) et al., Representation theory of Lie groups and Lie algebras. Proceedings of the conference, Fuji-Kawaguchiko, Japan, August 31--September 3, 1990. Hackensack, NJ: World Scientific (1992; Zbl 1098.22002) OpenURL