×

Control of the formation of projective synchronisation in lower-dimensional discrete-time systems. (English) Zbl 1098.37512

Summary: Projective synchronisation was recently observed in partially linear discrete-time systems. The scaling factor that characterises the behaviour of projective synchronisation is however unpredictable. In order to manipulate the ultimate state of the synchronisation, a control algorithm based on Schur-Chon stability criteria is proposed to direct the scaling factor onto any predestined value. In the numerical experiment, we illustrate the application on two chaotic discrete-time systems.

MSC:

37C75 Stability theory for smooth dynamical systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Pecora, L. M.; Carroll, T. L., Phys. Rev. Lett., 64, 821 (1990) · Zbl 0938.37019
[2] Blasius, B.; Huppert, A.; Stone, L., Nature (London), 399, 354 (1999)
[3] Pikosky, A.; Rosenblum, M. G.; Kurths, J., Int. J. Bifur. Chaos, 10, 2291 (2000) · Zbl 1090.37508
[4] Kocarev, L.; Parlitz, U., Phys. Rev. Lett., 76, 1816 (1996)
[5] San Roman, F. S.; Boccaletti, S.; Maza, D.; Mancini, H., Phys. Rev. Lett., 81, 3639 (1998)
[6] Mainieri, R.; Rehacek, J., Phys. Rev. Lett., 82, 3042 (1999)
[7] Gonzalez-Miranda, J. M., Phys. Rev. E, 53, R5 (1996)
[8] Xu, D.; Ong, W. L.; Li, Z., Phys. Lett. A, 305, 167 (2002) · Zbl 1001.37026
[9] D. Xu, C.Y. Chee, C. Li, in preparation; D. Xu, C.Y. Chee, C. Li, in preparation
[10] Xu, D., Phys. Rev. E, 63, 027201 (2001)
[11] Xu, D.; Chee, C. Y., Phys. Rev. E, 66, 046218 (2002)
[12] LaSalle, J. P., The Stability and Control of Discrete Processes (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0606.93001
[13] Wen, G.; Xu, D.; Han, X., Chaos, 12, 350 (2002) · Zbl 1080.37567
[14] C.Y. Chee, D. Xu, Chaos, in preparation; C.Y. Chee, D. Xu, Chaos, in preparation · Zbl 1195.81037
[15] Storm, C.; Freeman, W. J., Phys. Rev. E, 66, 057202 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.