×

Reconfigurable control system design using eigenstructure assignment: static, dynamic and robust approaches. (English) Zbl 1099.93039

Standard eigenstructure assignment techniques are applied to the problem of reconfiguring a linear controller after actuator/sensor failures or operating condition changes. A quadratic cost related to the desired eigenstructure is minimized so as to ensure a reasonable time response recovery and robust stability performance level.

MSC:

93D15 Stabilization of systems by feedback
93D09 Robust stability
93C05 Linear systems in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1109/87.556026 · doi:10.1109/87.556026
[2] Esna Ashari A, Proc. of SICE Annual Conf. pp pp. 857–2004–
[3] Esna Ashari A, 16th IFAC World Congress (2005)
[4] Esna Ashari A, 4th IEEE Int. Conf. on Control and Automation (2005)
[5] DOI: 10.1080/00207179108953643 · Zbl 0725.93025 · doi:10.1080/00207179108953643
[6] Golub GH, Matrix Computations (1989)
[7] Hajiev C, Fault Diagnosis and Reconfiguration in Control Systems (2003)
[8] DOI: 10.1080/00207179408923083 · Zbl 0802.93021 · doi:10.1080/00207179408923083
[9] DOI: 10.1080/0020718508961188 · Zbl 0567.93036 · doi:10.1080/0020718508961188
[10] Konstantopoulos K, Technical report, Interdisciplinary Studies of Intelligent Systems, University of Notre Dame (1996)
[11] Liu GP, Eigenstructure Assignment for Control System and Design (1998)
[12] DOI: 10.1109/MCS.1985.1104940 · doi:10.1109/MCS.1985.1104940
[13] DOI: 10.1109/7.81428 · doi:10.1109/7.81428
[14] DOI: 10.2514/3.20730 · doi:10.2514/3.20730
[15] Patton RJ, IEE Proceedings Control Theory Applications 141 pp pp. 202–208– (1994)
[16] Satoh A, J. Guidance Control and Dynamics 27 pp pp. 145–150– (2003)
[17] DOI: 10.2514/2.4465 · doi:10.2514/2.4465
[18] Stewart GW, Matrix Perturbation Theory (1990)
[19] Wilkinson JH, The Algebraic Eigenvalue Problem (1965)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.