Generating limit cycles from a nilpotent critical point via normal forms. (English) Zbl 1100.34030

The authors develop a normal form theory which is applied to solve the center-focus problem for monodromic planar nilpotent singularities to generate limit cycles from this type of singularities.


34C23 Bifurcation theory for ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
37G05 Normal forms for dynamical systems
37G10 Bifurcations of singular points in dynamical systems
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
Full Text: DOI


[1] M.J. Álvarez, A. Gasull, Monodromy and stability for nilpotent critical points, Internat. J. Bifur. Chaos, 2005, in press; M.J. Álvarez, A. Gasull, Monodromy and stability for nilpotent critical points, Internat. J. Bifur. Chaos, 2005, in press · Zbl 1088.34021
[2] Andreev, A. F., Investigation of the behavior of the integral curves of a system of two differential equations in the neighbourhood of a singular point, Transl. Amer. Math. Soc., 8, 183-207 (1958) · Zbl 0079.11301
[3] Andreev, A. F.; Sadovskii, A. P.; Tsikalyuk, V. A., The center-focus problem for a system with homogeneous nonlinearities in the case of zero eigenvalues of the linear part, Differential Equations, 39, 155-164 (2003) · Zbl 1067.34030
[4] Andronov, A. A.; Leontovich, E. A.; Gordon, I. I.; Maier, A. G., Theory of Bifurcations of Dynamical Systems on a Plane (1973), Wiley: Wiley New York · Zbl 0282.34022
[5] Chavarriga, J.; Giacomini, H.; Gine, J.; Llibre, J., Local analytic integrability for nilpotent centers, Ergodic Theory Dynam. Systems, 23, 417-428 (2003) · Zbl 1037.34025
[6] Cima, A.; Gasull, A.; Mañosas, F., Cyclicity of a family of vector fields, J. Math. Anal. Appl., 196, 921-937 (1995) · Zbl 0851.34027
[7] Farr, W. W.; Li, C.; Labouriau, I. S.; Langford, W. F., Degenerate Hopf bifurcation formulas and Hilbert’s 16th problem, SIAM J. Math. Anal., 20, 13-30 (1989) · Zbl 0682.58035
[8] Gasull, A.; Torregrosa, J., Center problem for several differential equations via Cherkas’ method, J. Math. Anal. Appl., 228, 322-343 (1998) · Zbl 0926.34022
[9] Jin, X. F.; Wang, D. M., On the conditions of Kukles for the existence of a centre, Bull. London Math. Soc., 22, 1-4 (1990) · Zbl 0692.34027
[10] Lyapunov, A. M., Stability of Motion, Math. Sci. Engrg., vol. 30 (1966), Academic Press: Academic Press New York · Zbl 0161.06303
[11] Moussu, R., Symétrie et forme normale des centres et foyers dégénérés, Ergodic Theory Dynam. Systems, 2, 241-251 (1982) · Zbl 0509.34027
[12] Roussarie, R., Bifurcation of Planar Vector Fields and Hilbert’s Sixteenth Problem, Progr. Math., vol. 164 (1998), Birkhäuser: Birkhäuser Basel · Zbl 0898.58039
[13] Shi, S. L., On the structure of Poincaré-Lyapunov constants for the weak focus of polynomial vector fields, J. Differential Equations, 52, 52-57 (1984) · Zbl 0534.34059
[14] Stróżyna, E.; Żoładek, H., The analytic and formal normal form for the nilpotent singularity, J. Differential Equations, 179, 479-537 (2002) · Zbl 1005.34034
[15] Takens, F., Singularities of vector fields, Inst. Hautes Études Sci. Publ. Math., 43, 47-100 (1974) · Zbl 0279.58009
[16] Ye, Y. Q., Theory of Limit Cycles, Transl. Math. Monogr., vol. 66 (1986), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0588.34022
[17] Zuppa, C., Order of cyclicity of the singular point of Liénard’s polynomial vector fields, Bol. Soc. Brasil Math., 12, 105-111 (1981) · Zbl 0577.34023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.