Arcoya, David; Ruiz, David The Ambrosetti–Prodi problem for the \(p\)-Laplace operator. (English) Zbl 1101.35033 Commun. Partial Differ. Equations 31, No. 4-6, 849-865 (2006). The authors consider the quasilinear boundary value problem \[ -\Delta_p u=f(u)+t\phi(x)+h(x) \tag{1} \] on a bounded domain \(\Omega\subseteq\mathbb R^N\) with homogeneous Dirichlet boundary conditions. Here \(\Delta_p\) denotes the \(p\)-Laplacian for \(p>1\), \(\phi,h\in L^\infty(\Omega)\), and \(\phi\) is positive. The function \(f\) is asymptotically \(p\)-linear, with different coefficients at \(-\infty\) and \(\infty\) (“jumping nonlinearity”). Inspired by H. Brezis and L. Nirenberg [C. R. Acad. Sci., Paris, Sér. I 317, No. 5, 465–472 (1993; Zbl 0803.35029)] it is proved that there exist \(t_*\leq t^*\) such that (1) admits at least two solutions for \(t<t_*\), at least one solution for \(t\leq t^*\), and no solution for \(t>t^*\). If \(t<t_*\) the existence of one solution follows from the existence of a sub- and a supersolution. A second solution is found by degree arguments. In order to apply degree theory the authors prove a strong comparison principle for solutions of (1). If \(p\geq2\) then conditions are given to ensure that \(t_*=t^*\). Reviewer: Nils Ackermann (México, D.F.) Cited in 77 Documents MSC: 35J65 Nonlinear boundary value problems for linear elliptic equations 35J60 Nonlinear elliptic equations 35J25 Boundary value problems for second-order elliptic equations 47H07 Monotone and positive operators on ordered Banach spaces or other ordered topological vector spaces 47H11 Degree theory for nonlinear operators 58E07 Variational problems in abstract bifurcation theory in infinite-dimensional spaces Keywords:Comparison principles for the \(p\)-Laplacian; Leray-Schauder degree; sub- and supersolutions; jumping nonlinearity Citations:Zbl 0803.35029 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] DOI: 10.1016/S0362-546X(97)00530-0 · Zbl 0930.35053 · doi:10.1016/S0362-546X(97)00530-0 [2] Amann H., Proc. Royal. Soc. Edinburgh 84 pp 145– (1979) [3] DOI: 10.1007/BF02412022 · Zbl 0288.35020 · doi:10.1007/BF02412022 [4] DOI: 10.1016/S0362-546X(02)00274-2 · Zbl 1013.35022 · doi:10.1016/S0362-546X(02)00274-2 [5] DOI: 10.1007/BF02588317 · Zbl 0571.35038 · doi:10.1007/BF02588317 [6] DOI: 10.1512/iumj.1975.24.24066 · Zbl 0329.35026 · doi:10.1512/iumj.1975.24.24066 [7] Brézis H., C.R. Acad. Sci. Paris, t. Série I 317 pp 465– (1993) [8] Cuesta , M. , Takáč , P. ( 1998 ). A strong comparison principle for the Dirichletp-Laplacian . In: Caristi , G. , Mitidieri , E. , eds. Proceedings of the Conference on Reaction-Diffusion Equations Trieste, Italy, 1995 . Lecture Notes in Pure and Appl. Math. Vol. 194 . New York-Basel : Marcel Dekker, Inc. , pp. 79 – 87 . [9] DOI: 10.1006/jdeq.1998.3423 · Zbl 0908.35042 · doi:10.1006/jdeq.1998.3423 [10] DOI: 10.1080/03605308408820345 · Zbl 0552.35030 · doi:10.1080/03605308408820345 [11] de Figueiredo D., J. Math. Pures Appl. 61 pp 41– (1982) [12] DOI: 10.1016/0022-0396(89)90093-4 · Zbl 0708.34019 · doi:10.1016/0022-0396(89)90093-4 [13] DOI: 10.1016/0362-546X(83)90061-5 · Zbl 0539.35027 · doi:10.1016/0362-546X(83)90061-5 [14] Fleckinger , J. , Hernández , J. , Takáč , P. , de Thélin , F. ( 1998 ). Uniqueness and positivity for solutions of equations with thep-Laplacian . In: Caristi , G. , Mitidieri , E. , eds. Proceedings of the Conference on Reaction-Diffusion Equations, Trieste, Italy, 1995 . Lecture Notes in Pure and Appl. Math. Vol. 194 . New York-Basel : Marcel Dekker, Inc. , pp. 141 – 155 . · Zbl 0912.35064 [15] Gilbarg D., Elliptic Partial Differential Equations of Second Order (1983) · Zbl 0562.35001 [16] DOI: 10.1016/0362-546X(89)90020-5 · Zbl 0714.35032 · doi:10.1016/0362-546X(89)90020-5 [17] Hess P., Boll. Un. Mat. Ital A 17 pp 187– (1980) [18] DOI: 10.1002/cpa.3160280502 · Zbl 0325.35038 · doi:10.1002/cpa.3160280502 [19] Kouzimi E., Diff. and Int. Equations 18 pp 241– (2005) [20] Krasnoselskii M. A., Soviet. Math. Dokl. 1 pp 1285– (1960) [21] Ladyzhenskaya O. A., Linear and Quasilinear Elliptic Equations (1968) · Zbl 0164.13002 [22] DOI: 10.1016/0362-546X(88)90053-3 · Zbl 0675.35042 · doi:10.1016/0362-546X(88)90053-3 [23] Perera K., Topol. Meth. Nonl. Anal. 20 pp 135– (2002) · Zbl 1200.35075 · doi:10.12775/TMNA.2002.029 [24] DOI: 10.1080/03605308308820285 · Zbl 0515.35024 · doi:10.1080/03605308308820285 [25] DOI: 10.1016/0022-0396(84)90105-0 · Zbl 0488.35017 · doi:10.1016/0022-0396(84)90105-0 [26] DOI: 10.1007/BF01449041 · Zbl 0561.35003 · doi:10.1007/BF01449041 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.