Oscillation criteria for second-order nonlinear neutral variable delay dynamic equations. (English) Zbl 1104.39009

Authors’ abstract: This paper is concerned with oscillation of second order nonlinear neutral dynamic equations on time scales with a variable delay. By using the generalized Riccati technique and integral averaging technique, new oscillation criteria are obtained for all solution of the equation. Some results extend known results for difference equations when the time scale is the set \({\mathbb Z}^{+}\) of positive integers and for differential equations when the time scale is \({\mathbb R}\). Several examples are given to illustrate the results of the paper.


39A11 Stability of difference equations (MSC2000)
39A12 Discrete version of topics in analysis
34K11 Oscillation theory of functional-differential equations
34K40 Neutral functional-differential equations
Full Text: DOI


[1] Agarwal, R. P.; Grace, S. R.; O’Regan, D., Oscillation Theory for Difference and Functional Differential Equations (2000), Kluwer: Kluwer Dordrecht · Zbl 0969.34062
[2] Agarwal, R. P.; Shieh, S. H.; Yeh, C. C., Oscillation criteria for second-order retarded differential equations, Math. Comput. Model., 26, 1-11 (1997) · Zbl 0902.34061
[3] Agarwal, R. P.; O’Regan, D.; Sake, S. H., Oscillation criteria for second-order nonlinear neutral delay dynamic equations, J. Math. Anal. Appl., 300, 203-217 (2004) · Zbl 1062.34068
[4] Bohner, M.; Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (2001), Birkhäuser: Birkhäuser Boston · Zbl 0978.39001
[5] Bohner, M.; Erbe, L.; Peterson, A., Oscillation for nonlinear second order dynamic equations on time scale, J. Math. Anal. Appl., 301, 491-507 (2005) · Zbl 1061.34018
[6] Dosly, O.; Hilger, S., A necessary and sufficient condition for oscillation of the Sturm Liouville dynamic equations on time scales, J. Comput. Appl. Math., 141, 147-158 (2002) · Zbl 1009.34033
[7] Erbe, L. H.; Kong, Q.; Zhang, B. G., Oscillation Theory for Functional Differential Equations (1995), Marcel Dekker: Marcel Dekker New York
[8] Hardy, G. H.; Littlewood, J. E.; Pólya, G., Inequalities (1988), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0634.26008
[9] Hamedani, G. G.; Krenz, G. S., Oscillation criteria for certain second order differential equations, J. Math. Anal. Appl., 149, 271-276 (1990) · Zbl 0701.34043
[10] Kamenev, I. V., An integral criterion for oscillation of linear differential equations of second order, Mat. Zametki, 23, 249-251 (1978) · Zbl 0386.34032
[11] Kusano, T.; Lalli, B. S., On oscillation of half-linear functional differential equations with deviating arguments, Hiroshima Math. J., 24, 549-563 (1994) · Zbl 0836.34081
[12] Mathsen, R. M.; Wang, Q. R.; Wu, H. W., Oscillation for neutral dynamic delay equations on time scales, J. Diff. Equat. Appl., 10, 7, 651-659 (2004) · Zbl 1060.34038
[13] Medico, A. D.; Kong, Q. K., Kamenev-type and interval oscillation criteria for second-order linear differential equations on a measure chain, J. Math. Anal. Appl., 294, 621-643 (2004) · Zbl 1056.34050
[14] Philos, Ch. G., A new criterion for the oscillatory and asymptotic behavior of delay differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Mater., 39, 61-64 (1981)
[15] Rogovchenko, Y. V., Oscillation criteria for certain nonlinear differential equations, J. Math. Anal. Appl., 229, 399-416 (1999) · Zbl 0921.34034
[16] Saker, S. H., Oscillation of nonlinear dynamic equations on time scales, Appl. Math. Comput., 148, 81-91 (2004) · Zbl 1045.39012
[17] Saker, S. H., Oscillation criteria of second-order half-linear dynamic equations on time scales, J. Comput. Appl. Math., 177, 375-387 (2005) · Zbl 1082.34032
[18] Wang, Q. R., Oscillation criteria for second-order nonlinear differential equations, Acta. Math. Sinica, 44, 2, 371-376 (2001) · Zbl 1018.34035
[19] Wang, Q. R., Oscillation and asymptotics for second-order half-linear differential equations, Appl. Math. Comput., 122, 253-266 (2001) · Zbl 1030.34031
[20] Wong, Y. V.P. J.Y.; Agarwal, R. P., Oscillatory behavior of solutions of certain second order nonlinear differential equations, J. Math. Anal. Appl., 198, 337-354 (1996) · Zbl 0855.34039
[21] Wu, H. W.; Xu, Y. T., Oscillation for nonautonomous neutral difference equations with variable coefficients, Fields Inst. Commun., 42, 363-370 (2004) · Zbl 1067.39021
[22] Wu, H. W.; Xu, Y. T.; Wang, Q. R., Oscillation and asymptotics for nonlinear second-order differential equations, Comput. Math. Appl., 48, 61-72 (2004) · Zbl 1073.34035
[23] Zhang, B. G.; Deng, X. G., Oscillation of delay differential equations on time scales, Math. Comput. Model., 36, 1307-1318 (2002) · Zbl 1034.34080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.