On a time-discretization method for a semilinear heat equation with purely integral conditions in a nonclassical function space. (English) Zbl 1105.35044

Summary: We construct a semidiscrete approximate solution to a semilinear one-dimensional heat equation subject to integral boundary conditions by means of the Rothe discretization in time method. The convergence of the approximation scheme obtained is proved, yielding the well-posedness of the problem considered.


35K20 Initial-boundary value problems for second-order parabolic equations
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35B45 A priori estimates in context of PDEs
35D05 Existence of generalized solutions of PDE (MSC2000)
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI


[1] Bouziani, A., Mixed problem with boundary integral conditions for a certain parabolic equation, J. Appl. Math. Stochastic Anal., 9, 3, 323-330 (1996) · Zbl 0864.35049
[2] Bouziani, A., On the quasi static flexure of a thermoelastic rod, Comm. Appl. Anal., 6, 4, 549-568 (2002) · Zbl 1084.74526
[3] Bouziani, A., On the solvability of parabolic and hyperbolic problems with a boundary integral condition, Internat. J. Math. Math. Sci., 31, 201-213 (2002) · Zbl 1011.35002
[4] Bouziani, A.; Benouar, N. E., Sur un problème mixte avec uniquement des conditions aux limites intégrales pour une classe d’équations paraboliques, Maghreb Math. Rev., 9, 1-2, 55-70 (2000)
[5] Bouziani, A.; Merazga, N., Rothe time-discretization method applied to a quasilinear wave equation subject to integral conditions, Adv. Difference Equations, 2004, 3, 211-235 (2004) · Zbl 1077.35097
[6] Kačur, J., Method of Rothe in evolution equations, (Teubner-Texte zur Mathematik, vol. 80 (1985), BSB B. G. Teubner Verlagsgesellschaft: BSB B. G. Teubner Verlagsgesellschaft Leipzig) · Zbl 0612.35006
[7] Kartsatos, A. G.; Parrott, M. E., The weak solution of a functional-differential equation in a general Banach space, J. Differential Equations, 75, 2, 290-302 (1988) · Zbl 0666.34076
[8] Kufner, A.; John, O.; Fučik, S., Function Spaces (1977), Noordhoff: Noordhoff Leiden · Zbl 0364.46022
[9] Nečas, J., Application of Rothe’s method to abstract parabolic equations, Czechoslovak Math. J., 24, 469-500 (1974) · Zbl 0311.35059
[10] Merazga, N.; Bouziani, A., Rothe method for a mixed problem with an integral condition for the two-dimensional diffusion equation, Abstr. Appl. Anal., 2003, 16, 899-922 (2003) · Zbl 1065.35026
[11] Merazga, N.; Bouziani, A., Rothe time-discretization method for a nonlocal problem arising in thermoelasticity, J. Appl. Math. Stochastic Anal., 2005, 1, 13-28 (2005) · Zbl 1077.74019
[12] Rectorys, K., The method of discretization in time and partial differential equations, (Mathematics and Its Applications, vol. 4 (1982), D. Reidel Publishing: D. Reidel Publishing Dordrecht) · Zbl 0505.65029
[13] Sapagovas, M. P.; Chegis, R. Yu., Boundary-value problems with nonlocal conditions, Differ. Uravn., 23, 7, 1268-1274 (1987) · Zbl 0641.34014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.