Pairs of dual Gabor frame generators with compact support and desired frequency localization. (English) Zbl 1106.42030

Denote \((T_a f)(x)=f(x-a)\) and \((E_b f)(x)=e^{2\pi i bx} f(x)\). Let \(g\) be a real-valued bounded function in \(L^2(\mathbb{R})\) such that \(\sum_{k\in \mathbb{Z}} g(x-k)=1\) and \(g\) is supported inside \([0,N]\) for some integer \(N\). This paper shows in Theorems 2.2 and 2.6 that for any \(b\in (0, \frac{1}{2N-1})\), \(\{E_{mb} T_n g\}_{m,n\in \mathbb{Z}}\) and \(\{E_{mb} T_n h\}_{m,n\in \mathbb{Z}}\) form a pair of dual Gabor dual frames for \(L^2(\mathbb{R})\), where \(h(x)=bg(x)+2b \sum_{n=1}^{N-1} g(x+n)\).
Reviewer: Bin Han (Edmonton)


42C99 Nontrigonometric harmonic analysis
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
Full Text: DOI


[1] Benedetto, J.; Walnut, D., Gabor frames for \(L^2\) and related spaces, (), 97-162 · Zbl 0887.42025
[2] Bölcskei, H.; Janssen, A.J.E.M., Gabor frames, unimodularity, and window decay, J. Fourier anal. appl., 6, 3, 255-276, (2000) · Zbl 0960.42008
[3] Christensen, O., An introduction to frames and Riesz bases, (2003), Birkhäuser Boston · Zbl 1017.42022
[4] Chui, C.; He, W.; Stöckler, J., Compactly supported tight frames and sibling frames with maximum vanishing moments, Appl. comput. harmon. anal., 13, 3, 224-262, (2002) · Zbl 1016.42023
[5] Daubechies, I., The wavelet transformation, time – frequency localization and signal analysis, IEEE trans. inform. theory, 36, 961-1005, (1990) · Zbl 0738.94004
[6] Daubechies, I.; Grossmann, A.; Meyer, Y., Painless nonorthogonal expansions, J. math. phys., 27, 1271-1283, (1986) · Zbl 0608.46014
[7] Daubechies, I.; Han, B.; Ron, A.; Shen, Z., Framelets: MRA-based constructions of wavelet frames, Appl. comput. harmon. anal., 14, 1-46, (2003) · Zbl 1035.42031
[8] Daubechies, I.; Jaffard, S.; Journé, J.L., A simple Wilson orthonormal basis with exponential decay, SIAM J. math. anal., 22, 554-572, (1991) · Zbl 0754.46016
[9] Del Prete, V., Estimates, decay properties, and computation of the dual function for Gabor frames, J. Fourier anal. appl., 5, 6, 545-561, (1999) · Zbl 0948.42024
[10] Gröchenig, K., Foundations of time – frequency analysis, (2000), Birkhäuser Boston
[11] Gröchenig, K.; Janssen, A.J.E.M.; Kaiblinger, N.; Pfander, G., Note on B-splines, wavelet scaling functions, and Gabor frames, IEEE trans. inform. theory, 49, 12, 3318-3320, (2003) · Zbl 1286.94033
[12] Janssen, A.J.E.M., The duality condition for weyl – heisenberg frames, () · Zbl 0890.42006
[13] Janssen, A.J.E.M., Representations of Gabor frame operators, (), 73-101 · Zbl 1003.42017
[14] Janssen, A.J.E.M., Zak transforms with few zeros and the tie, () · Zbl 1027.42025
[15] Lyubarskii, Y., Frames in the Bargmann space of entire functions, Adv. soviet math., 11, 167-180, (1992)
[16] Seip, K., Sampling and interpolation in the bargmann – fock space I, J. reine angew. math., 429, 91-106, (1992) · Zbl 0745.46034
[17] Seip, K.; Wallsten, R., Sampling and interpolation in the bargmann – fock space II, J. reine angew. math., 429, 107-113, (1992) · Zbl 0745.46033
[18] Strohmer, T., Approximation of dual Gabor frames, window decay and wireless communications, Appl. comput. harmon. anal., 11, 2, 243-262, (2001) · Zbl 0986.42018
[19] Walnut, D., An introduction to wavelet analysis, (2001), Birkhäuser Boston
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.