×

Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. (English) Zbl 1106.76008

Summary: The theory of asymptotic speeds of spread and monotone traveling waves is established for a class of monotone discrete and continuous-time semiflows and is applied to functional-differential equations with diffusion, to time-delayed lattice population models, and to reaction-diffusion equations on infinite cylinders.
For corrections see Commun. Pure Appl. Math. 61, No. 1, 137–138 (2008; Zbl 1165.37332).

MSC:

37L05 General theory of infinite-dimensional dissipative dynamical systems, nonlinear semigroups, evolution equations
34K25 Asymptotic theory of functional-differential equations
35K57 Reaction-diffusion equations
60J60 Diffusion processes

Citations:

Zbl 1165.37332
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] The asymptotic speed of propagation of a simple epidemic. Nonlinear diffusion (NSF-CBMS Regional Conf. Nonlinear Diffusion Equations, Univ. Houston, Houston, Tex., 1976), 1–23. Research Notes in Mathematics, 14. Pitman, London, 1977.
[2] ; Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. Partial differential equations and related topics (Program, Tulane Univ., New Orleans, La., 1974), 5–49. Lecture Notes in Mathematics, 446. Springer, Berlin, 1975.
[3] Aronson, Adv in Math 30 pp 33– (1978)
[4] Atkinson, Math Proc Cambridge Philos Soc 80 pp 315– (1976)
[5] Bates, SIAM J Math Anal 35 pp 520– (2003)
[6] Berestycki, Ann Inst H Poincaré Anal Non Linéaire 9 pp 497– (1992)
[7] Brown, Math Proc Cambridge Philos Soc 81 pp 431– (1977)
[8] Chen, J Differential Equations 184 pp 549– (2002)
[9] Chen, Math Ann 326 pp 123– (2003)
[10] Chow, J Differential Equations 149 pp 248– (1998)
[11] Diekmann, J Math Biol 6 pp 109– (1978)
[12] Diekmann, J Differential Equations 33 pp 58– (1979)
[13] Diekmann, Nonlinear Anal 2 pp 721– (1978)
[14] Fisher, Ann of Eugenics 7 pp 335– (1937)
[15] ; Green functions for second order parabolic integro-differential problems. Pitman Research Notes in Mathematics Series, 275. Longman, Harlow; co-published by Wiley, New York, 1992. · Zbl 0806.45007
[16] ; Introduction to functional differential equations. Springer, New York, 1993. · Zbl 0787.34002 · doi:10.1007/978-1-4612-4342-7
[17] Perturbation theory for linear operators. Springer, Berlin–Heidelberg, 1976. · doi:10.1007/978-3-642-66282-9
[18] Kolmogorov, Bull Univ Etat Moscou, Ser Int, Sect A, Math et Mecan 1 pp 1– (1937)
[19] Lewis, J Math Biol 45 pp 219– (2002)
[20] Li, Math Biosci 196 pp 82– (2005)
[21] Lui, Math Biosci 93 pp 269– (1989)
[22] Lui, Math Biosci 93 pp 297– (1989)
[23] Mallet-Paret, J Dynam Differential Equations 11 pp 49– (1999) · Zbl 0927.34049
[24] Mallordy, SIAM J Math Anal 26 pp 1– (1995)
[25] Martin, Trans Amer Math Soc 321 pp 1– (1990)
[26] Mathematical biology. I. An introduction. 3rd ed. Interdisciplinary Applied Mathematics, 17. Springer, New York, 2002.
[27] Mathematical biology. II. Spatial models and biomedical applications. 3rd ed. Interdisciplinary Applied Mathematics, 18. Springer, New York, 2003.
[28] Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, 44. Springer, New York, 1983. · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[29] Radcliffe, J Math Biol 17 pp 45– (1983)
[30] Radcliffe, J Math Biol 19 pp 303– (1984) · Zbl 0539.92027 · doi:10.1007/BF00277101
[31] Radcliffe, J Math Biol 23 pp 341– (1986)
[32] ; Spatial deterministic epidemics. Mathematical Surveys and Monographs, 102. American Mathematical Society, Providence, R.I., 2003. · doi:10.1090/surv/102
[33] Roquejoffre, Ann Inst H Poincaré Anal Non Linéaire 14 pp 499– (1997)
[34] Schaaf, Trans Amer Math Soc 302 pp 587– (1987)
[35] Travelling-front solutions for integro-differential equations. II. Biological growth and spread (Proc. Conf., Heidelberg, 1979), pp. 296–309. Lecture Notes in Biomathematics, 38. Springer, Berlin–New York, 1980. · doi:10.1007/978-3-642-61850-5_28
[36] Monotone dynamical systems. An introduction to the theory of competitive and cooperative systems. Mathematical Surveys and Monographs, 41. American Mathematical Society, Providence, R.I., 1995.
[37] Smith, SIAM J Math Anal 31 pp 514– (2000)
[38] Thieme, J Reine Angew Math 306 pp 94– (1979)
[39] Thieme, J Math Biol 8 pp 173– (1979)
[40] Thieme, J Differential Equations 195 pp 430– (2003)
[41] Vega, Differential Integral Equations 6 pp 131– (1993)
[42] ; ; Traveling wave solutions of parabolic systems. Translations of Mathematical Monographs, 140. American Mathematical Society, Providence, R.I., 1994.
[43] Wang, Dynamics of Continuous, Discrete and Impulsive System, Ser A
[44] Some deterministic models for the spread of genetic and other alterations. Biological growth and spread (Proc. Conf., Heidelberg, 1979), 320–349. Lecture Notes in Biomathematics, 38. Springer, Berlin–New York, 1980 · doi:10.1007/978-3-642-61850-5_30
[45] Weinberger, SIAM J Math Anal 13 pp 353– (1982)
[46] Weinberger, J Math Biol 45 pp 511– (2002)
[47] Weinberger, J Math Biol 45 pp 183– (2002)
[48] Weng, IMA J Appl Math 68 pp 409– (2003)
[49] Wu, J Differential Equations 135 pp 315– (1997)
[50] Wu, J Dynam Differential Equations 13 pp 651– (2001)
[51] Xu, J Dynam Differential Equations 16 pp 679– (2004)
[52] Dynamical systems in population biology. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 16. Springer, New York, 2003. · Zbl 1023.37047 · doi:10.1007/978-0-387-21761-1
[53] Zinner, J Differential Equations 105 pp 46– (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.